Abstract

In heavy rotating machines and assembly lines, bearing failure in any one of them may result in shut down and affects the overall cost and quality of the product. Condition monitoring of bearing systems avoids breakdown and saves time and cost of preventive and corrective maintenance. This research paper proposes advanced fault detection strategies for taper rolling bearings. In this, a mathematical model using dimension analysis by matrix method (DAMM) and support vector machine (SVM) is developed to predict the vibration characteristic of the rotor-bearing system. Various types of defects created using an electric discharge machine (EDM) are analyzed by correlating dependent and independent parameters. Experiments were performed to classify the rotor dynamic characteristic of the bearings and validated the models developed using DAMM and SVM. Results showed the potential of DA and SVM to predict the dynamic response and contribute to the service life extension, efficiency improvement, and reduce failure of bearings. Thus, the automatic online diagnosis of bearing faults is possible with a developed model-based by DAMM and SVM.

References

1.
Li
,
B. W.
, and
Zhang
,
Y.
,
2011
, “
Supervised Locally Linear Embedding Projection for Machinery Fault Diagnosis
,”
Mech. Syst. Signal Process.
,
25
(
8
), pp.
3125
3134
.10.1016/j.ymssp.2011.05.001
2.
Tandon
,
N.
, and
Choudhury
,
A.
,
1997
, “
An Analytical Model for the Prediction of the Vibration Response of Rolling Element Bearings Due to Localized Defect
,”
J. Sound Vib.
,
205
(
3
), pp.
275
292
.10.1006/jsvi.1997.1031
3.
Tandon
,
N.
, and
Choudhury
,
A.
,
1998
, “
A Theoretical Model to Predict Vibration Response of Rolling Bearings to Distributed Defects Under Radial Load
,”
ASME J. Vib. Acoust.
,
120
(
1
), pp.
214
220
.10.1115/1.2893808
4.
McFadden
,
P. D.
, and
Smith
,
J. D.
,
1984
, “
Model for Vibration Produced by a Single Point Defect in a Rolling Element Bearing
,”
J. Sound Vib.
,
96
(
1
), pp.
69
82
.10.1016/0022-460X(84)90595-9
5.
McFadden
,
P. D.
, and
Smith
,
J. D.
,
1985
, “
Vibration Produced by Multiple Point Defects in a Rolling Element Bearing
,”
J. Sound Vib.
,
98
(
2
), pp.
263
273
.10.1016/0022-460X(85)90390-6
6.
Igarashi
,
T.
, and
Kato
,
J.
,
1985
, “
Studies on the Vibration and Sound of Defective Rolling Bearings. Third Report: Vibration of Ball Bearing With Multiple Defects
,”
Bull. JSME
,
28
(
237
), pp.
492
499
.
7.
Choudhury
,
A.
, and
Tandon
,
N.
,
2006
, “
Vibration Response of Rolling Element Bearing in a Rotor Bearing System to a Local Defect Under Radial Load
,”
ASME J. Tribol.
,
128
(
2
), pp.
252
261
.10.1115/1.2164467
8.
Patil
,
M. S.
,
Mathew
,
J.
,
Rajendrakumar
,
P. K.
, and
Desai
,
S.
,
2010
, “
A Theoretical Model to Predict the Effect of Localized Defect on Vibrations Associated With Ball Bearing
,”
Int. J. Mech. Sci.
,
52
(
9
), pp.
1193
1201
.10.1016/j.ijmecsci.2010.05.005
9.
Sopanen
,
J.
, and
Mikkola
,
A.
,
2003
, “
Dynamic Model of a Deep- Groove Ball Bearings Including Localized and Distributed Defects. Part 1: Theory
,”
Proc. Inst. Mech. Eng., Part K
,
217
(
3
), pp.
201
211
.10.1243/14644190360713551
10.
Sopanen
,
J.
, and
Mikkola
,
A.
,
2003
, “
Dynamic Model of a Deep- Groove Ball Bearings Including Localized and Distributed Defects. Part 2: Implementation and Results
,”
Proc. Inst. Mech. Eng., Part K
,
217
(
3
), pp.
213
223
.10.1243/14644190360713560
11.
Dick
,
P.
,
Carl
,
H.
,
Nader
,
S.
,
Alireza
,
M. A.
, and
Sarabjeet
,
S.
,
2015
, “
Analysis of Bearing Stiffness Variations Contact Forces and Vibrations in Radially Loaded Double Row Rolling Element Bearing With Raceway Defect
,”
J. Mech. Syst. Signal Process.
,
50–51
(
1
), pp.
139
160
.10.1016/j.ymssp.2014.04.014
12.
Tomovic
,
R.
,
Miltenovic
,
V.
,
Banic
,
M.
, and
Miltenovic
,
A.
,
2010
, “
Vibration Response of Rigid Rotor in Unloaded Rolling Element Bearing
,”
Int. J. Mech. Sci.
,
52
(
9
), pp.
1176
1185
.10.1016/j.ijmecsci.2010.05.003
13.
Desavale
,
R. G.
,
Venkatachalam
,
R.
, and
Chavan
,
S. P.
,
2013
, “
Antifriction Bearings Damage Analysis Using Experimental Data Based Models
,”
ASME J. Tribol.
,
135
(
4
), p.
041105
.10.1115/1.4024638
14.
Desavale
,
R. G.
,
Venkatachalam
,
R.
, and
Chavan
,
S. P.
,
2014
, “
Experimental and Numerical Studies on Spherical Roller Bearings Using Multivariable Regression Analysis
,”
ASME J. Vib. Acoust.
,
136
(
2
), p.
021022
.10.1115/1.4026433
15.
Desavale
,
R. G.
,
Kanai
,
R. A.
,
Chavan
,
S. P.
,
Venkatachalam
,
R.
, and
Jadhav
,
P. M.
,
2015
, “
Vibration Characteristics Diagnosis of Roller Bearing Using the New Empirical Model
,”
ASME J. Tribol.
,
138
(
1
), p.
011103
.10.1115/1.4031065
16.
Desavale
,
R. G.
,
2019
, “
Dynamics Characteristic and Diagnosis of a Rotor- Bearing's System Through a Dimensional Analysis Approach: An Experimental Study
,”
ASME J. Comp. Non. Dyn.
,
14
(
2
), p.
014501
.10.1115/1.4041828
17.
Kanai
,
R. A.
,
Desavale
,
R. G.
, and
Chavan
,
S. P.
,
2016
, “
Experimental–Based Fault Diagnosis of Rolling Bearings Using Artificial Neural Network
,”
ASME J. Tribol.
,
138
(
3
), p.
031103
.10.1115/1.4032525
18.
Patel
,
V.
,
Tandon
,
N.
, and
Pandey
,
R. K.
,
2010
, “ “
A Dynamic Model for Vibration Studies of Deep Groove Ball Bearings Considering Single and Multiple Defects in Races
,”
ASME J. Tribol.
,
132
(
4
), p.
041101
.10.1115/1.4002333
19.
Kumbhar
,
S. G.
,
Sudhagar P
,
E.
, and
Desavale
,
R. G.
,
2020
, “
Theoretical and Experimental Studies to Predict Vibration Responses of Defects in Spherical Roller Bearings Using Dimension Theory
,”
J. Meas.
,
161
, p.
107846
.10.1016/j.measurement.2020.107846
20.
Kumbhar
,
S. G.
, and
Sudhakar
,
E. P.
,
2020
, “
Fault Diagnostics of Roller Bearings Using Dimension Theory
,”
J. Non. Eval. Diag. Prog. Eng. Syst.
,
4
(
1
), p.
1100110
.10.1115/1.4047102
21.
Widodo
,
A.
, and
Yang
,
B. S.
,
2007
, “
Support Vector Machine in Machine Condition Monitoring and Fault Diagnosis
,”
J. Mech. Syst. Signal Process.
,
21
(
6
), pp.
2560
2574
.10.1016/j.ymssp.2006.12.007
22.
Yang
,
Y.
,
Dejie
,
Y.
, and
Junsheng
,
C.
,
2007
, “
A Fault Diagnosis Approach for Roller Bearing Based on IMF Envelope Spectrum and SVM
,”
J. Meas.
,
40
(
9–10
), pp.
943
950
.10.1016/j.measurement.2006.10.010
23.
Yongbo
,
L.
,
Minqiang
,
X.
,
Wei
,
Y.
, and
Wenhu
,
H.
,
2016
, “
A New Rolling Bearing Fault Diagnosis Method Based on Multiscale Permutation Entropy and Improved Support Vector Machine Based Binary Tree
,”
J. Meas.
,
77
, pp.
80
94
.10.1016/j.measurement.2015.08.034
24.
Widodo
,
A.
,
Kim
,
Y. E.
,
Son
,
D. J.
,
Yang
,
B. S.
,
Tan
,
C. A.
,
Dong
,
S. G.
,
Byeong
,
K. C.
, and
Mathew
,
J.
,
2009
, “
Fault Diagnosis of Low-Speed Bearing Based on Relevance Vector Machine and Support Vector Machine
,”
J. Expert Syst. Appl.
,
36
(
3
), pp.
7252
7261
.10.1016/j.eswa.2008.09.033
25.
Saimurugan
,
M.
,
Ramachandran
,
K. I.
,
Sugumaran
,
V.
, and
Sakthivel
,
N. R.
,
2011
, “
Multi-Component Fault Diagnosis of Rotational Mechanical System Based on Decision Tree and Support Vector Machine
,”
J. Expert Syst. Appl.
,
38
(
4
), pp.
3819
3826
.10.1016/j.eswa.2010.09.042
26.
Liu
,
R.
,
Yang
,
B.
,
Zhang
,
X.
,
Wang
,
S.
, and
Chen
,
X.
,
2016
, “
Time-Frequency Atoms-Driven Support Vector Machine Method for Bearings Incipient Fault Diagnosis
,”
J. Mech. Syst. Signal Process.
,
75
, pp.
345
370
.10.1016/j.ymssp.2015.12.020
27.
Kumar
,
A.
, and
Kumar
,
R.
,
2017
, “
Time-Frequency Analysis and Support Vector Machine in Automatic Detection of Defect From Vibration Signal of Centrifugal Pump
,”
J. Meas.
,
108
, pp.
119
133
.10.1016/j.measurement.2017.04.041
28.
Kankar
,
P. K.
,
Sharma
,
S. C.
, and
Harsha
,
S. P.
,
2011
, “
Fault Diagnosis of Ball Bearing Using Machine Learning Methods
,”
Expert Syst. Appl.
,
38
(
3
), pp.
1876
1886
.10.1016/j.eswa.2010.07.119
29.
Janani
,
S. R.
, and
Tiwari
,
R.
,
2017
, “
Experimental Time-Domain Vibration Based Fault Diagnosis of Centrifugal Pumps Using SVM
,”
ASME J. Risk Uncertainty Eng. Syst., Part B
,
3
(
1
), p.
044501
.10.1115/1.4035440
30.
Janani
,
S. R.
, and
Tiwari
,
R.
,
2019
, “
Multi-Fault Diagnosis of Combined Hydraulic and Mechanical Centrifugal Pump Faults Using Continuous Wavelet Transform and Support Vector Machines
,”
ASME J. Dyn. Syst., Meas. Control.
,
4
(
1
), p.
078509
.10.1115/1.4044274
31.
Gangsar
,
P.
, and
Tiwari
,
R.
,
2019
, “
Online Diagnostics of Mechanical and Electrical Faults in Induction Motor Using Multiclass Support Vector Machine Algorithms Based on Frequency Domain Vibration and Current Signals
,”
ASME J. Risk Uncertainty Eng. Sys.
,
5
(
1
), p.
031001
.10.1115/1.4043268
32.
Jadhav
,
P. M.
,
Kumbhar
,
S. G.
,
Desavale
,
R. G.
, and
Patil
,
S. B.
,
2020
, “
Distributed Fault Diagnosis of Rotor-Bearing System Using Dimensional Analysis and Experimental Methods
,”
J. Meas.
,
166
, p.
108239
.10.1016/j.measurement.2020.108239
33.
Kumbhar
,
S. G.
, and
Sudhagar P
,
E.
,
2020
, “
An Integrated Approach of Adaptive Neuro-Fuzzy Inference System and Dimension Theory for Diagnosis of Rolling Element Bearing
,”
J. Meas.
,
166
, p.
108266
.10.1016/j.measurement.2020.108266
34.
Caesarendra
,
W.
,
Pratama
,
M.
,
Kosasih
,
B.
,
Tjahjowidodo
,
T.
, and
Glowacz
,
A.
,
2018
, “
Parsimonious Network Based on a Fuzzy Inference System (PANFIS) for Time Series Feature Prediction of Low Speed Slew Bearing Prognosis
,”
Appl. Sci.
,
8
(
12
), p.
2656
.10.3390/app8122656
35.
Glowacz
,
A.
,
Glowacz
,
W.
,
Kozik
,
J.
,
Piech
,
K.
,
Gutten
,
M.
,
Caesarendra
,
W.
,
Liu
,
H.
,
Brumercik
,
F.
,
Irfan
,
M.
, and
Faizal Khan
,
Z.
,
2019
, “
Detection of Deterioration of Three-Phase Induction Motor Using Vibration Signals
,”
Meas. Sci. Rev.
,
19
(
6
), pp.
241
249
.10.2478/msr-2019-0031
You do not currently have access to this content.