The paper deals with the stochastic dynamics of a vibroimpact single-degree-of-freedom system under a Gaussian white noise. The system is assumed to have a hard type impact against a one-sided motionless barrier, located at the system's equilibrium. The system is endowed with a fractional derivative element. An analytical expression for the system's mean squared response amplitude is presented and compared with the results of numerical simulations.
Issue Section:
Special Section Papers
References
1.
Ibrahim
, R. A.
, 2009
, Vibro-Impact Dynamics
, Springer
, Berlin.2.
Ibrahim
, R. A.
, Babitsky
, V. I.
, and Okuma
, M.
, 2009
, Vibro-Impact Dynamics of Ocean Systems and Related Problems
, Springer
, Berlin.3.
Dimentberg
, M.
, Yurchenko
, D.
, and van Ewijk
, O.
, 1998
, “Subharmonic Response of a Quasi-Isochronous Vibroimpact System to a Randomly Disordered Periodic Excitation
,” Nonlinear Dyn.
, 17
(2
), pp. 173
–186
.4.
Jacquelin
, E.
, Adhikari
, S.
, and Friswell
, M. I.
, 2011
, “A Piezoelectric Device for Impact Energy Harvesting
,” Smart Mater. Struct.
, 20
(10
), p. 105008.5.
Zhang
, Y.
, Cai
, C. S.
, and Zhang
, W.
, 2014
, “Experimental Study of a Multi-Impact Energy Harvester Under Low Frequency Excitations
,” Smart Mater. Struct.
, 23
(5
), p. 055002.6.
Masri
, S. F.
, 1967
, “Effectiveness of Two Particle Impact Dampers
,” J. Acoust. Soc. Am.
, 41
(6
), pp. 1553
–1554
.7.
Lu
, Z.
, Masri
, S. F.
, and Lu
, X.
, 2011
, “Studies of the Performance of Particle Dampers Attached to a Two-Degrees-of-Freedom System Under Random Excitation
,” J. Vib. Control
, 17
(10
), pp. 1454
–1471
.8.
Pavlovskaia
, E.
, Hendry
, D. C.
, and Wiercigroch
, M.
, 2015
, “Modelling of High Frequency Vibro-Impact Drilling
,” Int. J. Mech. Sci.
, 91
, pp. 110
–119
.9.
Dimentberg
, M.
, and Iourtchenko
, D. V.
, 2004
, “Random Vibrations With Impacts: A Review
,” Nonlinear Dyn.
, 36
(2), pp. 229
–254
.10.
Dimentberg
, M.
, and Iourtchenko
, D. V.
, 1999
, “Towards Incorporating Impact Losses Into Random Vibration Analyses: A Model Problem
,” Probab. Eng. Mech.
, 14
(4
), pp. 323
–328
.11.
Iourtchenko
, D. V.
, and Song
, L. L.
, 2006
, “Numerical Investigation of a Response Probability Density Function of Stochastic Vibroimpact Systems With Inelastic Impacts
,” Int. J. Non-Linear Mech.
, 41
(3
), pp. 447
–455
.12.
Gemant
, A.
, 1936, “A Method of Analyzing Experimental Results Obtained From Elasto-Viscous Bodies
,” J. Appl. Phys.
, 7
, pp. 311
–317
.13.
Bagley
, R. L.
, and Torvik
, P. J.
, 1979
, “A Generalized Derivative Model for an Elastomer Damper
,” Shock Vib. Bull.
, 49
, pp. 135
–143
.14.
Bagley
, R. L.
, and Torvik
, P. J.
, 1983
, “A Theoretical Basis for the Application of Fractional Calculus
,” J. Rheol.
, 27
(3
), pp. 201
–210
.15.
Bagley
, R. L.
, and Torvik
, P. J.
, 1983
, “Fractional Calculus—A Different Approach to the Analysis of Viscoelastically Damped Structures
,” AIAA J.
, 21
(5), pp. 741
–774
.16.
Bagley
, R. L.
, and Torvik
, P. J.
, 1986
, “On the Fractional Calculus Model of Viscoelastic Behavior
,” J. Rheol.
, 30
(1
), pp. 133
–155
.17.
Nutting
, P. G.
, 1921
, “A New General Law Deformation
,” J. Franklin Inst.
, 191
(5), pp. 678
–685
.18.
Schmidt
, A.
, and Gaul
, L.
, 2002
, “Finite Element Formulation of Viscoelastic Constitutive Equations Using Fractional Time Derivatives
,” Nonlinear Dyn.
, 29
(1
), pp. 37
–55
.19.
Gonsovskii
, V. L.
, and Rossikhin
, Y. A.
, 1973
, “Stress Waves in a Viscoelastic Medium With a Singular Hereditary Kernel
,” J. Appl. Mech. Tech. Phys.
, 14
(4
), pp. 595
–597
.20.
Schiessel
, H.
, and Blumen
, A.
, 1993
, “Hierarchical Analogues to Fractional Relaxation Equations
,” J. Phys. A
, 26
(19
), pp. 5057
–5069
.21.
Stiassnie
, M.
, 1979
, “On the Application of Fractional Calculus for the Formulation of Viscoelastic Models
,” Appl. Math. Modell.
, 3
(4
), pp. 300
–302
.22.
Mainardi
, F.
, and Gorenflo
, R.
, 2007
, “Time-Fractional Derivatives in Relaxation Processes: A Tutorial Survey
,” Fractional Calculus Appl. Anal.
, 10
(3
), pp. 269
–308
.23.
Samko
, G. S.
, Kilbas
, A. A.
, and Marichev
, O. I.
, 1993
, Fractional Integrals and Derivatives
, Gordon and Breach Science Publishers
, Amsterdam, The Netherlands
.24.
Podlubny
, I.
, 1999
, On Solving Fractional Differential Equations by Mathematics, Science and Engineering
, Academic Press
, San Diego, CA.25.
Hilfer
, R.
, 2000
, Applications of Fractional Calculus in Physics
, World Scientific
, Singapore
.26.
Di Paola
, M.
, Pirrotta
, A.
, and Valenza
, A.
, 2011
, “Visco-Elastic Behavior Through Fractional Calculus: An Easier Method for Best Fitting Experimental Results
,” Mech. Mater.
, 43
(12
), pp. 799
–806
.27.
Pirrotta
, A.
, Cutrona
, S.
, Di Lorenzo
, S.
, and Di Matteo
, A.
, 2015
, “Fractional Visco-Elastic Timoshenko Beam Deflection Via Single Equation
,” Int. J. Numer. Methods Eng.
, 104
(9
), pp. 869
–886
.28.
Di Lorenzo
, S.
, Di Paola
, M.
, Pinnola
, F. P.
, and Pirrotta
, A.
, 2014
, “Stochastic Response of Fractionally Damped Beams
,” Probab. Eng. Mech.
, 35
, pp. 37
–43
.29.
Di Paola
, M.
, Heuer
, R.
, and Pirrotta
, A.
, 2013, “Fractional Visco-Elastic Euler-Bernoulli Beam
,” Int. J. Solids Struct.
, 50
(22–23
), pp. 3505
–3510
.30.
Pirrotta
, A.
, Cutrona
, S.
, and Di Lorenzo
, S.
, 2015
, “Fractional Visco-Elastic Timoshenko Beam From Elastic Euler-Bernoulli Beam
,” Acta Mech.
, 226
(1
), pp. 179
–189
.31.
Bucher
, C.
, and Pirrotta
, A.
, 2015
, “Dynamic Finite Element Analysis of Fractionally Damped Structural Systems in the Time Domain
,” Acta Mech.
, 226
(12
), pp. 3977
–3990
.32.
Alotta
, G.
, Di Paola
, M.
, and Pirrotta
, A.
, 2014
, “Fractional Tajimi-Kanai Model for Simulating Earthquake Ground Motion
,” Bull. Earthquake Eng. (BEEE)
, 12
(6
), pp. 2495
–2506
.33.
Di Matteo
, A.
, Lo Iacono
, F.
, Navarra
, G.
, and Pirrotta
, A.
, 2015
, “Innovative Modeling of Tuned Liquid Column Damper Motion
,” Commun. Nonlinear Sci. Numer. Simul.
, 23
(1–3
), pp. 229
–244
.34.
Di Paola
, M.
, Failla
, G.
, and Pirrotta
, A.
, 2012
, “Stationary and Non-Stationary Stochastic Response of Linear Fractional Viscoelastic Systems
,” Probab. Eng. Mech.
, 28
, pp. 85
–90
.35.
Failla
, G.
, and Pirrotta
, A.
, 2012
, “On the Stochastic Response of a Fractionally-Damped Duffing Oscillator
,” Commun. Nonlinear Sci. Numer. Simul.
, 17
(12
), pp. 5131
–5142
.36.
Evangelatos
, G. I.
, and Spanos
, P. D.
, 2011
, “An Accelerated Newmark Scheme for Integrating the Equation of Motion of Nonlinear Systems Comprising Restoring Elements Governed by Fractional Derivatives
,” Recent Advances in Mechanics
, Springer, Dordrecht, The Netherlands, pp. 159
–177
.37.
Huang
, Z. L.
, and Jin
, X. L.
, 2009
, “Response and Stability of a SDOF Strongly Nonlinear Stochastic System With Light Damping Modeled by a Fraction Derivative
,” J. Sound Vib.
, 319
(3–5
), pp. 1121
–1135
.38.
Spanos
, P. D.
, and Evangelatos
, G. I.
, 2010
, “Response of a Non-Linear System With Restoring Forces Governed by Fractional Derivatives-Time Domain Simulation and Statistical Linearization Solution
,” Soil Dyn. Earthquake Eng.
, 30
(9
), pp. 811
–821
.Copyright © 2017 by ASME
You do not currently have access to this content.