Abstract

Supercritical carbon dioxide CO2 has been proposed as working fluid in various types of power plants, thanks to its potential higher efficiency and cost reduction with respect to well-known technology of steam cycles. However, the high operating temperature and pressure conditions pose significant concerns in terms of compatibility of supercritical CO2 with the high-temperature sections of the power block. Typically, to address this problem, experiments are proposed, where samples of different materials are kept in contact with the supercritical CO2 in a pressure vessel in order to test the material compatibility. This research deals with designing an innovative openable pressure vessel capable of withstanding the high temperatures (700 °C) and the pressures (100 bar) typical of those power plants. The results obtained by analytical calculation and the finite element method are consistent. The results obtained with both methods are generalizable and the methodology is applicable to any removable pressure vessel that must withstand 100 bar of pressure and a temperature of 700 °C, application field that is outside the ASME B&PV Code Section VIII division 1, standard usually used for the design of nonnuclear pressure vessels. It is important to emphasize that the use of a removable container allows to reduction of the costs of compatibility tests since otherwise, after each test, the pressure vessel would be disposed of. In addition, this allows a reduction of the environmental impact due to the fact that the new container will not be disposed of after each use.

References

1.
Persichilli
,
M.
,
Kacludis
,
A.
,
Zdankiewicz
,
E.
, and
Held
,
T.
, 2012, “Supercritical CO2 Power Cycle Developments and Commercialization: Why SCO2 Can Displace Steam,”
Power-Gen India & Central Asia 2012 Conference
, Pragati Maidan, New Delhi, India, Apr. 19–21, pp. 1–16.https://sites.google.com/a/sco2powercyclesymposium.org/www/resource_center/system_concepts/supercritical-co2-power-cycle-developments-and-commercialization-why-sco2-can-displace-steam
2.
Dostal
,
V.
,
Hejzlar
,
P.
, and
Driscoll
,
M. J.
,
2006
, “
The Supercritical Carbon Dioxide Power Cycle: Comparison to Other Advanced Power Cycles
,”
Nucl. Technol.
,
154
(
3
), pp.
283
301
.10.13182/NT06-A3734
3.
Moss
,
D.
,
2004
,
Third Edition Pressure Vessel Design Manual
, Gulf Professional Publishing (Elsevier),
Houston, TX.
4.
Towler
,
G.
, and
Sinnott
,
R.
,
2013
, “
Design of Pressure Vessels
,”
Chemical Engineering Design
, diacriTech (
Elsevier)
, Amsterdam, The Netherlands, pp.
563
629
.10.1016/B978-0-08-096659-5.00014-6
5.
Jung Lee
, H.
,
Jang
,
C.
,
Kim
,
H.
,
J.
, and
Lee
,
H.
,
2014
, “
Compatibility of Candidate Structural Materials in High-Temperature s-CO2 Environment
,”
The 4th International Symposium - Supercritical CO2 Power Cycles Conference
, Pittsburgh, PA, Sept. 9–10, pp.
1
9
.http://sco2symposium.com/papers2014/materials/32-Jang.pdf
6.
Pint
,
B. A.
,
Keiser
,
J. R.
, and
Brese
,
R. G.
,
2016
, “
The Effect of Temperature and Pressure on Supercritical CO2 Compatibility of Conventional Structural Alloys
,”
Conference: The 5th International Symposium - Supercritical CO2 Power Cycles
, San Antonio, TX, Mar. 28–31, Article No. #056.https://www.ornl.gov/publication/effect-temperature-and-pressure-supercritical-co2-compatibility-conventional-structural
7.
Special Metals
, “
INCONEL ® Alloy 625
,” Special Metals Corporation, New Hartford, NY.
8.
Mazzoni
,
A.
, and
Solazzi
,
L.
,
2022
, “
Experimental Field Test on a Multipiece Steel Wheel and Influence of the Material Properties on Its Fatigue Life Evaluation
,”
Eng. Fail. Anal.
,
135
, Paper No. 106106.10.1016/j.engfailanal.2022.106106
9.
Solazzi
,
L.
,
Scalmana
,
R.
,
Gelfi
,
M.
, and
Vecchia
,
G. M. L.
,
2012
, “
Effect of Different Corrosion Levels on the Mechanical Behavior and Failure of Threaded Elements
,”
J. Fail. Anal. Prev.
,
12
(
5
), pp.
541
549
.10.1007/s11668-012-9593-x
10.
Mohammadzadeh
,
A. R.
, and
Haidar
,
S. M.
,
2022
, “
Thermo-Mechanical Stresses in the Design and Analysis of Thick-Walled Pressure Vessels
,”
ASME
Paper No.
IMECE2021-66582.10.1115/IMECE2021-66582
11.
Solazzi
,
L.
, and
Vaccari
,
M.
,
2022
, “
Reliability Design of a Pressure Vessel Made of Composite Materials
,”
Compos. Struct.
,
279
, Paper No. 114726.10.1016/j.compstruct.2021.114726
12.
Giuffrida
,
A.
,
Valenti
,
G.
,
Palamini
,
D.
, and
Solazzi
,
L.
,
2018
, “
On the Conceptual Design of the Novel Balanced Rolling Piston Expander
,”
Case Stud. Therm. Eng.
,
12
, pp.
38
46
.10.1016/j.csite.2018.03.003
13.
Solazzi
,
L.
,
2021
, “
Stress Variability in Multilayer Composite Hydraulic Cylinder
,”
Compos. Struct.
,
259
, p.
113249
.10.1016/j.compstruct.2020.113249
14.
Solazzi
,
L.
, and
Buffoli
,
A.
,
2021
, “
Fatigue Design of Hydraulic Cylinder Made of Composite Material
,”
Compos. Struct.
,
277
, p.
114647
.10.1016/j.compstruct.2021.114647
15.
Bazaras
,
Ž.
,
Leonavicius
,
M.
,
Lukoševicius
,
V.
, and
Raslavicius
,
L.
,
2021
, “
Assessment of the Durability of Threaded Joints
,”
Appl. Sci. (Switzerland)
,
11
(
24
), Paper No. 12162.10.3390/app112412162
16.
Medvecký
,
Š.
, Hrček, S.,
Kohár
,
R.
,
Brumerčík
,
F.
,
Viera
,
K.
,
2018
,
Lecture Notes in Mechanical Engineering - Current Methods of Costruction Design
, Springer Nature Switzerland AG, Cham, Switzerland.10.1007/978-3-030-33146-7
17.
Du
,
M.
,
Song
,
F.
,
Li
,
H.
, and
Li
,
K.
,
2020
, “
Preload Assurance in Bolted Flanges With a Model and Test Based Optimized Assembly Procedure
,”
ASME
Paper No. PVP2020-21688.10.1115/PVP2020-21688
18.
Mancovsky
,
J.
, and
Ferriera
,
J.
,
2020
, “
Optimizing Bolting Configurations in a Pressure Vessel
,”
ASME
Paper No. IMECE2019-11561.10.1115/IMECE2019-11561
19.
Zheng
,
X.
,
Sato
,
K.
,
Fujihara
,
T.
,
Akamatsu
,
Y.
, and
Sawa
,
T.
,
2019
, “
Effect of Tightening Procedure on the Sealing Performance of Bolted Gasketed Pipe Flange Connections
,”
ASME
Paper No. PVP2019-93497.10.1115/PVP2019-93497
20.
Brown
,
W.
, and
Knight
,
N.
,
2019
, “
An Update on Quantifying Bolt Relaxation During High Temperature Operation
,”
ASME
Paper No.
PVP2019-93872.10.1115/PVP2019-93872
21.
Jinescu
,
V. V.
,
Urse
,
G.
, and
Chelu
,
A.
,
2018
, “
Evaluation and Completion the Design Methods of Pressure Vessels Flange Joints
,”
Rev. Chimie - Bucharest
,
68
(
8
), pp.
1954
1961
.10.37358/RC.18.8.6453
22.
Kirkemo
,
F.
,
2018
, “
Structural Capacities of Flanged Joints
,”
ASME
Paper No. PVP2018-85088.10.1115/PVP2018-85088
23.
Bi
,
L.
, and
Zhang
,
L.
,
2018
, “
Three-Dimensional Numerical Analysis for Bolted Flange Joints Considering Effect of Creep
,”
ASME
Paper No. PVP2018-85111.10.1115/PVP2018-85111
24.
Xue
,
J.
, and
Wang
,
L.
,
2018
, “
Calculation of Leakage Rate for Bolted Flanged Joint During the Long Term Service at High Temperature-Asme/Terms-of-Use
,”
ASME
Paper No. PVP2018-84445.10.1115/PVP2018-84445
25.
Brown
,
W.
,
2017
, “
Quantifying Bolt Relaxation During High Temperature Operation
,”
ASME
Paper No. PVP2017-65550.10.1115/PVP2017-65550
26.
Zhu
,
L.
,
Bouzid
,
A.-H.
, and
Hong
,
J.
,
2017
, “
Numerical and Experimental Study of Elastic Interaction in Bolted Flange Joints
,”
ASME J. Pressure Vessel Technol.
,
139
(
2
), p.
021211
.10.1115/1.4035316
27.
Choulaei
,
M.
, and
Bouzid
,
A. H.
,
2022
, “
Stress Analysis of Bolted Flange Joints With Different Shell Connections
,”
ASME
Paper No. IMECE2021-72063.10.1115/IMECE2021-72063
28.
ASME
,
2019
,
SECTION VIII ASME Boiler and Pressure Vessel Code - Division 1
, ASME, New York.https://www.techstreet.com/standards/asme-bpvc-viii-1-2019?product_id=2026380
29.
Wang
,
L.
,
Fan
,
Z.
, and
Xue
,
J.
,
2018
, “
FEM Stress Analysis of Bolted Flange Joints in Elevated Temperature Service Condition-Asme/Terms-of-Use
,”
ASME
Paper No. PVP2018-84444.10.1115/PVP2018-84444
30.
Esmailzadeh
,
M.
,
Mousavi
,
R.
,
Esfahani
,
M. M.
,
Pezzato
,
L.
, and
Karimi
,
E.
,
2022
, “
Effect of Cold Forging on Mechanical and Corrosion Behaviors of Carbon Steel Plate
,”
Int. J. Pressure Vessels Piping
,
198
, Paper No. 104659.10.1016/j.ijpvp.2022.104659
You do not currently have access to this content.