Abstract

Engineering critical assessment (ECA) guidelines contain rules to assess flaw interaction. Major flaw dimensions (depth or height and length) are typically characterized assuming the flaws to be contained entirely within a bounding rectangle through a procedure known as flaw idealization. In fracture mechanics based calculations, flaws are often assumed to be (semi-)elliptical when evaluating possible interaction. This paper investigates the implication of this simplification for the specific case of two identical coplanar surface breaking flaws. Two flaw shapes are considered and compared: semi-elliptical and canoe-shaped (quarter-circular ends with constant depth elsewhere). Especially for long and shallow flaws, the canoe-shaped configuration best approximates the bounding rectangle, whereas the semi-elliptical shape only touches the bounding rectangle at three points (deepest point and two points at the surface). Several flaw dimensions and spacing distances are studied through an extensive parametric study comprising both linear elastic and elastic-plastic finite element simulations. The results, evaluated in terms of stress intensity factor (SIF) and J-integral, show that the flaw shape idealization, particularly for long and shallow flaws, can significantly affect the degree of interaction between identical coplanar flaws. The inconsistency between semi-elliptical and canoe-shaped flaw shapes is observed in a linear elastic analysis and becomes more pronounced at higher loading levels evaluated in elastic-plastic analyses.

References

1.
ASME
,
2019
,
ASME Boiler and Pressure Vessel Code Section XI
,
American Society of Mechanical Engineers
,
New York
.
2.
BSI
,
2019
,
Guide to Methods for Assessing the Acceptability of Flaws in Metallic Structures
,
BSI
,
London, UK
, Standard No. BS7910.
3.
Smith
,
E.
, and
Beardsmore
,
D. W.
,
2009
, “
Pessimisms Inherent in Current Treatments of Multiple Defects in Fracture Assessments
,”
ASME
Paper No. PVP2009-77750.10.1115/PVP2009-77750
4.
Lacroix
,
V.
,
Mareš
,
V.
,
Strnadel
,
B.
, and
Hasegawa
,
K.
,
2017
, “
Combination Criterion for Multiple Laminar Flaws in Steel Components
,”
Key Eng. Mater.
,
741
, pp.
63
69
.10.4028/www.scientific.net/KEM.741.63
5.
Park
,
S.-H.
,
Choi
,
J.-B.
,
Huh
,
N.-S.
,
Lee
,
S.-M.
, and
Kim
,
Y.-B.
,
2018
, “
Numerical Validations of Flaw Shape Idealization Methods to Burst Pressure Estimations of Steam Generator Tube With Axial Surface Flaws
,”
ASME J. Press. Vessel Technol.
,
140
(
1
), p.
011202
.10.1115/1.4038310
6.
Keating
,
R.
, and
Begley
,
J.
,
2001
, “
Steam Generator Degradation Specific Management Flaw Handbook
,” Electrical Power Research Institute, Palo Alto, CA, Report No. EPRI NP-719-Sr.
7.
O'Brian
,
J.
,
Olson
,
R.
, and
Young
,
B.
,
2017
, “
Stress Intensity Factor Solutions for Crack-Like Anomalies in ERW Seam Welded Pipe
,”
ASME
Paper No. PVP2017-65381.10.1115/PVP2017-65381
8.
API
,
2016
,
Recommended Practice for Fitness-for-Service: API-579-1
, 2nd ed,
American Petroleum Institute
,
Washington DC
, Standard No. API 579-1/ASME FFS-1.
9.
Hasegawa
,
K.
,
Miyazaki
,
K.
, and
Saito
,
K.
,
2010
, “
Behavior of Plastic Collapse Moments for Pipes With Two Non-Aligned Flaws
,”
ASME
Paper No. PVP2010-25199.10.1115/PVP2010-25199
10.
Iwamatsu
,
F.
,
Miyazaki
,
K.
,
Saito
,
K.
, and
Hasegawa
,
K.
,
2009
, “
Experimental Estimation of Fully Plastic Collapse Stresses for Pipes With Three Circumferential Flaws
,”
ASME
Paper No. PVP2009-77924.10.1115/PVP2009-77924
11.
Murakami
,
Y.
, and
Nemat-Nasser
,
S.
,
1982
, “
Interacting Dissimilar Semi-Elliptical Surface Flaws Under Tension and Bending
,”
Eng. Fract. Mech.
,
16
(
3
), pp.
373
386
.10.1016/0013-7944(82)90115-1
12.
Kamaya
,
M.
, “
Flaw Proximity Rules for Parallel Surface Cracks Based on Elastic, Elastic-Plastic Fracture Mechanics and Limit Load Analyses
,”
ASME
Paper No. PVP2006-93341.10.1115/PVP2006-93341
13.
Kamaya
,
M.
,
2011
, “
A Criterion for Combination Rule in Flaw Assessment of Parallel Surface Cracks
,”
ASME J. Pressure Vessel Technol.
,
133
(
6
), p.
061204
.10.1115/1.4004563
14.
Samadian
,
K.
,
Hertelé
,
S.
, and
De Waele
,
W.
,
2018
, “
A Strain-Based Approach to Study Interaction Between Non-Coplanar Through-Thickness Edge Notches
,”
J. Strain Anal. Eng. Des.
,
53
(
8
), pp.
687
698
.10.1177/0309324718778440
15.
Wobst
,
K.
,
Müller
,
W.
,
Krafka
,
H.
, and
Brocks
,
W.
,
1991
, “
Experimental and Numerical Investigations of Stable Crack Growth of Axial Surface Flaws in a Pressure Vessel
,”
Nucl. Eng. Des.
,
128
(
1
), pp.
9
16
.10.1016/0029-5493(91)90244-C
16.
Brocks
,
W.
, and
Kunecke
,
G.
,
1990
, “
Elastic-Plastic Fracture Mechanics Analysis of a Pressure Vessel With an Axial Outer Surface Flaw
,”
Nucl. Eng. Des.
,
119
(
2–3
), pp.
307
315
.10.1016/0029-5493(90)90171-S
17.
Brocks
,
W.
,
Künecke
,
G.
,
Noack
,
H. D.
, and
Veith
,
H.
,
1989
, “
On the Transferability of Fracture Mechanics Parameters From Specimens to Structures Using FEM
,”
Nucl. Eng. Des.
,
112
, pp.
1
14
.10.1016/0029-5493(89)90140-4
18.
Kordisch
,
H.
,
Sommer
,
E.
, and
Schmitt
,
W.
,
1989
, “
The Influence of Triaxiality on Stable Crack Growth
,”
Nucl. Eng. Des.
,
112
, pp.
27
35
.10.1016/0029-5493(89)90142-8
19.
Zadeh
,
G. M.
,
1995
, “
Analysis of Stable Crack Growth of a Semi-Elliptical Surface Crack by Numerical Simulation
,”
Nucl. Eng. Des.
,
158
(
2–3
), pp.
311
317
.10.1016/0029-5493(95)01038-J
20.
Murakami
,
Y.
,
1985
, “
Analysis of Stress Intensity Factors of Modes I, II and III for Inclined Surface Cracks of Arbitrary Shape
,”
Eng. Fract. Mech.
,
22
(
1
), pp.
101
114
.10.1016/0013-7944(85)90163-8
21.
Coules
,
H. E.
,
2016
, “
Stress Intensity Interaction Between Dissimilar Semi-Elliptical Surface Cracks
,”
Int. J. Press. Vessel. Pip.
,
146
, pp.
55
64
.10.1016/j.ijpvp.2016.07.011
22.
Newman
,
J. C.
, and
Raju
,
I. S.
,
1981
, “
Stress-Intensity Factor Equations for Cracks in Three-Dimensional Finite Bodies
,”
Eng. Fract. Mech.
,
15
(
1–2
), pp.
185
192
.10.1016/0013-7944(81)90116-8
23.
Hertelé
,
S.
,
De Waele
,
W.
,
Denys
,
R.
, and
Verstraete
,
M.
,
2011
, “
Analytical Validation of Crack Driving Force Calculations for Defects in Plates and Pipes Under Tension
,”
Mech. Eng. Lett.
,
5
, pp.
81
88
.https://www.researchgate.net/publication/293048804_Analytical_validation_of_crack_driving_force_calculations_for_defects_in_plates_and_pipes_under_tension
24.
Kamaya
,
M.
,
2008
, “
Influence of the Interaction on Stress Intensity Factor of Semielliptical Surface Cracks
,”
ASME J. Pressure Vessel Technol.
,
130
(
1
), p.
011406
.10.1115/1.2826424
25.
Hasegawa
,
K.
,
Saito
,
K.
, and
Miyazaki
,
K.
,
2009
, “
Alignment Rule for Non-Aligned Flaws for Fitness-for-Service Evaluations Based on LEFM
,”
ASME J. Pressure Vessel Technol.
,
131
(
4
), p.
041403
.10.1115/1.3152229
26.
Hasegawa
,
K.
,
Miyazaki
,
K.
, and
Kanno
,
S.
,
2001
, “
Interaction Criteria for Multiple Flaws on the Basis of Stress Intensity Factors
,”
ASME
Paper No. PVP2001-422.https://www.researchgate.net/publication/289650224_Interaction_criteria_for_multiple_flaws_on_the_basis_of_stress_intensity_factors
27.
Champigny
,
F.
,
Sandberg
,
U.
,
Engl
,
G.
,
Crutzen
,
S.
,
Lemaitre
,
P.
,
Whittle
,
J.
, and
Plant
,
F. N. P.
,
1997
, “
European Methodology for Qualification of NDT as Developed by ENIQ
,”
NDE Techniques Capability Demonstration and Inspection Qualification
, Vol.
24
, Petten, The Netherlands, Mar. 11–13, pp.
24
34
.
You do not currently have access to this content.