Abstract

In the earlier work done by the author for the reactor pressure vessel (RPV) material 20MnMoNi55 steel, Monte Carlo simulation technique is shown as an effective statistical technique to calibrate Weibull modulus “m” and Weibull scale parameter “σu” for temperatures −100 °C, −110 °C, −120 °C, −130 °C, and −140 °C by performing only six fracture toughness tests instead of (30 × 5 = 150) number of tests. But it lacks validation with the experimental work. So, in this paper, huge numbers of fracture toughness tests (minimum 30 for each temperature) are performed experimentally at −100 °C, −110 °C, and −130 °C in the lower self of the ductile-to-brittle transition (DBT) region for the RPV material 20MnMoNi55 steel. Then, linear regression analysis of the experimental data is performed to calibrate Weibull modulus m and Weibull scale parameter σu of Beremin (a cleavage fracture model) for the above mentioned temperatures. The calibrate values show a matching trend with that of experimental calibrated values and justify the prediction capability of Monte Carlo simulation to predict the Beremin model parameters with the help of only six fracture toughness tests. This statistical simulation procedure can be considered as an effective technique for the proper calibration of Beremin model parameters for any material.

References

1.
Bhattacharyya
,
K.
,
2013
, “
Study of Constraint Effect on Reference Temperature (T0) of RPV Material (20MnMoNi55 Steel) in the Ductile to Brittle Transition Region
,”
ME thesis
,
Jadavpur University
,
Kolkata, India
.
2.
Bhowmik
,
S.
,
Sahoo
,
P.
,
Acharyya
,
S. K.
,
Chattopadhyay
,
J.
, and
Dhar
,
S.
,
2012
, “
Application and Comparative Study of Master Curve Methodology for Fracture Toughness Characterization of 20MnMoNi55 Steel
,”
Mater. Des.
,
39
, pp.
309
317
.10.1016/j.matdes.2012.02.050
3.
Wallin
,
K.
,
1984
, “
The Scatter in KIC Result
,”
Eng. Fract. Mech.
,
19
(
6
), pp.
1085
1093
.10.1016/0013-7944(84)90153-X
4.
Wallin
,
K.
,
1999
, “
The Master Curve Method: A New Concept for Brittle Fracture
,”
Int. J. Mater. Prod. Technol.
,
14
(
2/3/4
), pp.
342
354
.10.1504/IJMPT.1999.036276
5.
Wallin
,
K.
,
1998
, “
Master Curve of Ductile to Brittle Transition Region Fracture Toughness Round Robin Data: The ‘EURO’ Fracture Toughness Curve
,” VTT, Espoo, Finland, Report No. 367.
6.
Bhattacharyya
,
K.
,
Acharyya
,
S.
,
Dhar
,
S.
, and
Chattopadhyay
,
J.
,
2014
, “
Study of Constraint Effect on Reference Temperature (T0) of Reactor Pressure Vessel Material (20MnMoNi55 Steel) in the Ductile to Brittle Transition Region
,”
Procedia Eng.
,
86
, pp.
264
271
.10.1016/j.proeng.2014.11.037
7.
Bhowmik
,
S.
,
Sahoo
,
P.
,
Acharyya
,
S. K.
,
Dhar
,
S.
, and
Chattopadhyay
,
J.
,
2015
, “
Evaluation and Effect of Loss of Constraint on Master Curve Reference Temperature of 20MnMoNi55 Steel
,”
Eng. Fract. Mech.
,
136
, pp.
142
157
.10.1016/j.engfracmech.2015.01.022
8.
Ruggieri
,
C.
, and
Dodds
,
R. H.
,
1996
, “
A Transferability Model for Brittle Fracture Including Constraint and Ductile Tearing Effects: A Probabilistic Approach
,”
Int. J. Fract.
,
79
(
4
), pp.
309
340
.10.1007/BF00018594
9.
Ruggieri
,
C.
,
Dodds
,
R. H.
, and
Wallin
,
K.
,
1998
, “
Constraints Effects on Reference Temperature T0 for Ferritic Steels in the Transition Region
,”
Eng. Fract. Mech.
,
60
(
1
), pp.
19
36
.10.1016/S0013-7944(98)00001-0
10.
Philip
,
M.
, Ramos, C. C., Mendes, J., and Debarberis, L.,
2009
, “
Constraint-Based Master Curve Analysis of a Nuclear Reactor Pressure Vessel Steel: Results From an Experimental Programme Carried Out Within the IAEA CRP-8 Project
,” European Commission, Brussels, Belgium, Report No.
EUR 24092 EN
.https://op.europa.eu/en/publication-detail/-/publication/4e7ce42e-d718-4906-922a-7a805daa4f8a/language-en/format-PDF/source-120647748
11.
Gupta
,
M.
,
Alderliesten
,
R. C.
, and
Benedictu
,
R.
,
2015
, “
A Review of T-Stress and Its Effects in Fracture Mechanics
,”
Eng. Fract. Mech.
,
134
, pp.
218
241
.10.1016/j.engfracmech.2014.10.013
12.
Ayatollahi
,
M. R.
,
Pavier
,
M. J.
, and
Smith
,
D. J.
,
1998
, “
Determination of T-Stress From Finite Element Analysis for Mode I and Mixed Mode I/II Loading
,”
Int. J. Fract.
,
91
(
3
), pp.
283
298
.10.1023/A:1007581125618
13.
Castro
,
J. T. P.
,
Sousa
,
R. A.
, and
Lopes
,
A. A. O.
,
2011
, “
Comparing Improved Plastic Zone Estimates Considering Corrections Based on T-Stress and a Complete Stress Fields
,”
Proceedings of First IJFatigue & FFEMS Joint Workshop
, Forni di Sopra (UD), Italy, Mar. 7–9, pp.
58
65
.https://www.semanticscholar.org/paper/Comparing-improved-crack-tip-plastic-zone-estimates-Castro-Sousa/24feedcae372e88695509d2656b1c0caa88e17c3
14.
Wallin
,
K.
,
2001
, “
Quantifying T-Stress Controlled Constraint by the Master Curve Transition Temperature T0
,”
Eng. Fract. Mech.
,
68
(
3
), pp.
303
328
.10.1016/S0013-7944(00)00067-9
15.
Henry
,
B. S.
, and
Luxmoore
,
A. R.
,
1997
, “
The Stress Triaxiality Constraint and the Q-Value as a Ductile Fracture Parameter
,”
Eng. Fract. Mech.
,
57
(
4
), pp.
375
390
.10.1016/S0013-7944(97)00031-3
16.
Moattari
,
M.
, and
Sattari-Far
,
I.
,
2017
, “
Modification of Fracture Toughness Master Curve Considering the Crack-Tip Q-Constrain
,”
Theor. Appl. Fract. Mech.
,
90
, pp.
43
52
.10.1016/j.tafmec.2017.02.012
17.
Cravero
,
S.
, and
Ruggieri
,
C.
,
2003
, “
A Two-Parameter Framework to Describe Effects of Constraint Loss on Cleavage Fracture and Implications for Failure Assessments of Cracked Components
,”
J. Braz. Soc. Mech. Sci. Eng.
,
25
(
4
), pp.
403
412
. 10.1590/S1678-58782003000400013
18.
Marcin
,
G.
,
2012
, “
The Influence of Material Properties and Crack Length on the Q-Stress Value Near the Crack Tip for Elastic-Plastic Materials for Centrally Cracked Plate in Tension
,”
J. Theor. Appl. Mech.
,
50
(
1
), pp.
23
46
. http://ptmts.org.pl/jtam/index.php/jtam/article/view/v50n1p23
19.
Bhattacharyya
,
K.
,
Acharyya
,
S.
,
Dhar
,
S.
, and
Chattopadhyay
,
J.
,
2020
, “
Modelling the Constraint Effect on Reference Temperature With Finite Element Parameters for Reactor Pressure Vessel Material 20MnMoNi55 Steel
,”
Def. Sci. J.
,
70
(
3
), pp.
323
328
.10.14429/dsj.70.12886
20.
Beremin
,
F. M.
,
Pineau
,
A.
,
Mudry
,
F.
,
Devaux
,
J.-C.
,
D'Escatha
,
Y.
, and
Ledermann
,
P.
,
1983
, “
A Local Criterion for Cleavage Fracture of a Nuclear Pressure Vessel Steel
,”
Metall. Trans.
,
14
(
11
), pp.
2277
2287
.10.1007/BF02663302
21.
Bhattacharyya
,
K.
,
Acharyya
,
S.
,
Dhar
,
S.
, and
Chattopadhyay
,
J.
,
2018
, “
Calibration of Beremin Parameters for 20MnMoNi55 Steel and Prediction of Reference Temperature (T0) for Different Thicknesses and a/W Ratios
,”
J. Failure Anal. Prev.
,
18
(
6
), pp.
1534
1547
.10.1007/s11668-018-0549-7
22.
Khalili
,
A.
, and
Kromp
,
K.
,
1991
, “
Statistical Properties of Weibull Estimators
,”
J. Mater. Sci.
,
26
(
24
), pp.
6741
6752
.10.1007/BF02402669
23.
Bhattacharyya
,
K.
,
Acharyya
,
S.
,
Dhar
,
S.
, and
Chattopadhyay
,
J.
,
2019
, “
Variation of Beremin Model Parameters With Temperature by Monte Carlo Simulation
,”
ASME J. Pressure Vessel Technol.
,
141
(
2
), p.
021401
.10.1115/1.4042121
24.
International Atomic Energy Agency
,
2005
, “
Guidelines for Application of the Master Curve Approach to Reactor Pressure Vessel Integrity in Nuclear Power Plants
,” IAEA, Vienna, Austria, Technical Report No.
429
. https://www.iaea.org/publications/7059/guidelines-for-application-of-the-master-curve-approach-to-reactor-pressure-vessel-integrity-in-nuclear-power-plants
25.
Cao
,
Y.
,
Hui
,
H.
,
Wang
,
G.
, and
Xuan
,
F.-Z.
,
2011
, “
Inferring the Temperature Dependence of Beremin Cleavage Model Parameters From the Master Curve
,”
Nucl. Eng. Des.
,
241
(
1
), pp.
39
45
.10.1016/j.nucengdes.2010.11.009
You do not currently have access to this content.