Abstract

This article reported first-time the post-buckling temperature load parameter values of nanotube-reinforced polymeric composite panel and their improvement by introducing the functional material (shape memory alloy, SMA) fiber. The temperature load values of nanotube composite and SMA activation are modeled using the single-layer type higher-order kinematic model in association with isoparametric finite element technique. To ensure the effective properties of SMA bonded nanotube composite under the elevated temperature, a hybrid micromechanical material modeling approach is adopted (Mori–Tanaka scheme and rule of mixture). The present structural geometry distortion under elevated temperature is modeled through the nonlinear strain kinematics (Green–Lagrange), whereas the strain reversal achieved with the help of marching technique (inclusion of material nonlinearity). Owing to the importance of geometrical distortion of the polymeric structure, the current model includes all of the nonlinear strain terms to accomplish the exact deformation. Further, to compute the post-buckling responses, the governing nonlinear eigenvalue equations are derived by Hamilton's principle. The numerical solution accuracy is verified with adequate confirmation of model consistency. The material model applicability for different structural configurations including important individual/combined parameter tested through a series of examples. Moreover, the final understanding relevant to the post-buckling characteristics of the polymeric structure and SMA influences is highlighted in details considering the prestrain, recovery stress, and their volume fractions.

References

1.
Hollaway
,
L. C.
,
2010
, “
A Review of the Present and Future Utilisation of FRP Composites in the Civil Infrastructure With Reference to Their Important In-Service Properties
,”
Constr. Build. Mater.
,
24
(
12
), pp.
2419
2445
.10.1016/j.conbuildmat.2010.04.062
2.
Gay
,
D.
,
2014
,
Composite Materials: Design and Applications
,
CRC Press
, Boca Raton, FL.
3.
Barbero
,
E. J.
,
2017
,
Introduction to Composite Materials Design
,
CRC Press
, Boca Raton, FL.
4.
Al-Saleh
,
M. H.
, and
Sundararaj
,
U.
,
2011
, “
Review of the Mechanical Properties of Carbon Nanofiber/Polymer Composites
,”
Compos. Part A: Appl. Sci. Manuf.
,
42
(
12
), pp.
2126
2142
.10.1016/j.compositesa.2011.08.005
5.
Coleman
,
J. N.
,
Khan
,
U.
,
Blau
,
W. J.
, and
Gun'ko
,
Y. K.
,
2006
, “
Small but Strong: A Review of the Mechanical Properties of Carbon Nanotube–Polymer Composites
,”
Carbon N. Y.
,
44
(
9
), pp.
1624
1652
.10.1016/j.carbon.2006.02.038
6.
Gibson
,
R. F.
,
2010
, “
A Review of Recent Research on Mechanics of Multifunctional Composite Materials and Structures
,”
Compos. Struct.
,
92
(
12
), pp.
2793
2810
.10.1016/j.compstruct.2010.05.003
7.
Khaniki
,
H. B.
, and
Ghayesh
,
M. H.
,
2020
, “
A Review on the Mechanics of Carbon Nanotube Strengthened Deformable Structures
,”
Eng. Struct.
,
220
, p.
110711
.10.1016/j.engstruct.2020.110711
8.
Redshaw
,
S. C.
,
1934
,
The Elastic Instability of a Thin Curved Panel Subjected to an Axial Thrust, Its Axial and Circumferential Edges Being Simply Supported
,
HM Stationery Office
, Great Britain, UK.
9.
Timoshenko
,
S.
, and
Gere
,
J. M.
,
1961
,
Theory of Elastic Stability
(Engineering Societies Monographs), Dover Publications, Mineola, NY.
10.
Le Tran
,
K.
,
Davaine
,
L.
,
Douthe
,
C.
, and
Sab
,
K.
,
2012
, “
Stability of Curved Panels Under Uniform Axial Compression
,”
J. Constr. Steel Res.
,
69
(
1
), pp.
30
38
.10.1016/j.jcsr.2011.07.015
11.
Martins
,
J. P.
,
Da Silva
,
L. S.
, and
Reis
,
A.
,
2014
, “
Ultimate Load of Cylindrically Curved Panels Under In-Plane Compression and Bending—Extension of Rules From EN 1993-1-5
,”
Thin-Walled Struct.
,
77
, pp.
36
47
.10.1016/j.tws.2013.11.012
12.
Tran
,
K. L.
,
Douthe
,
C.
,
Sab
,
K.
,
Dallot
,
J.
, and
Davaine
,
L.
,
2014
, “
A Preliminary Design Formula for the Strength of Stiffened Curved Panels by Design of Experiment Method
,”
Thin-Walled Struct.
,
79
, pp.
129
137
.10.1016/j.tws.2014.02.012
13.
Li
,
Z.-M.
, and
Qiao
,
P.
,
2015
, “
Buckling and Postbuckling Behavior of Shear Deformable Anisotropic Laminated Beams With Initial Geometric Imperfections Subjected to Axial Compression
,”
Eng. Struct.
,
85
, pp.
277
292
.10.1016/j.engstruct.2014.12.028
14.
Dey
,
T.
, and
Ramachandra
,
L. S.
,
2019
, “
Computation of Worst Geometric Imperfection Profiles of Composite Cylindrical Shell Panels by Minimizing the Non-Linear Buckling Load
,”
Appl. Math. Modell.
,
74
, pp.
483
495
.10.1016/j.apm.2019.04.065
15.
Lal
,
R.
, and
Saini
,
R.
,
2020
, “
Vibration Analysis of FGM Circular Plates Under Non-Linear Temperature Variation Using Generalized Differential Quadrature Rule
,”
Appl. Acoust.
,
158
, p.
107027
.10.1016/j.apacoust.2019.107027
16.
Avcar
,
M.
,
2014
, “
Elastic Buckling of Steel Columns Under Axial Compression
,”
Am. J. Civ. Eng.
,
2
(
3
), pp.
102
108
.10.11648/j.ajce.20140203.17
17.
Jönsson
,
J.
,
Müller
,
M. S.
,
Gamst
,
C.
,
Valeš
,
J.
, and
Kala
,
Z.
,
2019
, “
Investigation of European Flexural and Lateral Torsional Buckling Interaction
,”
J. Constr. Steel Res.
,
156
, pp.
105
121
.10.1016/j.jcsr.2019.01.026
18.
Szymczak
,
C.
, and
Kujawa
,
M.
,
2019
, “
Flexural Buckling and Post-Buckling of Columns Made of Aluminium Alloy
,”
Eur. J. Mech.
,
73
, pp.
420
429
.10.1016/j.euromechsol.2018.10.006
19.
Zhang
,
L. W.
,
Liew
,
K. M.
, and
Reddy
,
J. N.
,
2016
, “
Postbuckling Analysis of Bi-Axially Compressed Laminated Nanocomposite Plates Using the First-Order Shear Deformation Theory
,”
Compos. Struct.
,
152
, pp.
418
431
.10.1016/j.compstruct.2016.05.040
20.
Juhász
,
Z.
, and
Szekrényes
,
A.
,
2020
, “
An Analytical Solution for Buckling and Vibration of Delaminated Composite Spherical Shells
,”
Thin-Walled Struct.
,
148
, p.
106563
.10.1016/j.tws.2019.106563
21.
Kolahchi
,
R.
,
Hosseini
,
H.
,
Fakhar
,
M. H.
,
Taherifar
,
R.
, and
Mahmoudi
,
M.
,
2019
, “
A Numerical Method for Magneto-Hygro-Thermal Postbuckling Analysis of Defective Quadrilateral Graphene Sheets Using Higher Order Nonlocal Strain Gradient Theory With Different Movable Boundary Conditions
,”
Comput. Math. Appl.
,
78
(
6
), pp.
2018
2034
.10.1016/j.camwa.2019.03.042
22.
Hirwani
,
C. K.
, and
Panda
,
S. K.
,
2019
, “
Nonlinear Finite Element Solutions of Thermoelastic Deflection and Stress Responses of Internally Damaged Curved Panel Structure
,”
Appl. Math. Modell.
,
65
, pp.
303
317
.10.1016/j.apm.2018.08.014
23.
Moradi-Dastjerdi
,
R.
,
Behdinan
,
K.
,
Safaei
,
B.
, and
Qin
,
Z.
,
2020
, “
Buckling Behavior of Porous CNT-Reinforced Plates Integrated Between Active Piezoelectric Layers
,”
Eng. Struct.
,
222
, p.
111141
.10.1016/j.engstruct.2020.111141
24.
Keryvin
,
V.
,
Marchandise
,
A.
,
Mechin
,
P.-Y.
, and
Grandidier
,
J.-C.
,
2020
, “
Determination of the Longitudinal Non Linear Elastic Behaviour and Compressive Strength of a CFRP Ply by Bending Tests on Laminates
,”
Compos. Part B: Eng.
,
187
, p.
107863
.10.1016/j.compositesb.2020.107863
25.
Masood
,
S. N.
,
Gaddikeri
,
K. M.
, and
Viswamurthy
,
S. R.
,
2019
, “
Experimental and Finite Element Numerical Studies on the Post-Buckling Behavior of Composite Stiffened Panels
,”
Mech. Adv. Mater. Struct.
, pp.
1
14
. 10.1080/15376494.2019.1701151
26.
Kolanu
,
N. R.
,
Raju
,
G.
, and
Ramji
,
M.
,
2018
, “
Experimental and Numerical Studies on the Buckling and Post-Buckling Behavior of Single Blade-Stiffened CFRP Panels
,”
Compos. Struct.
,
196
, pp.
135
154
.10.1016/j.compstruct.2018.05.015
27.
Trabelsi
,
S.
,
Frikha
,
A.
,
Zghal
,
S.
, and
Dammak
,
F.
,
2018
, “
Thermal Post-Buckling Analysis of Functionally Graded Material Structures Using a Modified FSDT
,”
Int. J. Mech. Sci.
,
144
, pp.
74
89
.10.1016/j.ijmecsci.2018.05.033
28.
Seneviratne
,
W.
,
Saseendran
,
V.
,
Perera
,
S.
,
Saathoff
,
B.
,
Rubesinghe
,
L.
, and
Tomblin
,
J.
,
2019
, “
Numerical Studies on Buckling and Post-Buckling Behavior of Stiffened Curved Composite Panel With Repairs
,”
Proceedings of the 34th Technical Conference of the American Society for Composites
, Atlanta, GA, Sept. 23–25.10.12783/asc34/31330
29.
Madenci
,
E.
, and
Barut
,
A.
,
1994
, “
Pre‐ and Postbuckling Response of Curved, Thin, Composite Panels With Cutouts Under Compression
,”
Int. J. Numer. Methods Eng.
,
37
(
9
), pp.
1499
1510
.10.1002/nme.1620370906
30.
Hu
,
N.
, and
Burgueño
,
R.
,
2018
, “
Cylindrical Shells With Tunable Postbuckling Features Through Non-Uniform Patterned Thickening Patches
,”
Int. J. Struct. Stab. Dyn.
,
18
(
02
), p.
1850026
.10.1142/S0219455418500268
31.
Wang
,
P.
,
Huang
,
X.
,
Wang
,
Z.
,
Geng
,
X.
, and
Wang
,
Y.
,
2018
, “
Buckling and Post-Buckling Behaviors of a Variable Stiffness Composite Laminated Wing Box Structure
,”
Appl. Compos. Mater.
,
25
(
2
), pp.
449
467
.10.1007/s10443-017-9643-3
32.
Rajanna
,
T.
,
Banerjee
,
S.
,
Desai
,
Y. M.
, and
Prabhakara
,
D. L.
,
2017
, “
Effect of Boundary Conditions and Non-Uniform Edge Loads on Buckling Characteristics of Laminated Composite Panels With and Without Cutout
,”
Int. J. Comput. Methods Eng. Sci. Mech.
,
18
(
1
), pp.
64
76
.10.1080/15502287.2016.1276350
33.
Shojaee
,
T.
,
Mohammadi
,
B.
, and
Madoliat
,
R.
,
2020
, “
Experimental and Numerical Investigation of Stiffener Effects on Buckling Strength of Composite Laminates With Circular Cutout
,”
J. Compos. Mater.
,
54
(
9
), pp.
1141
1160
.10.1177/0021998319874101
34.
Possidente
,
L.
,
Tondini
,
N.
, and
Battini
,
J.-M.
,
2019
, “
Branch-Switching Procedure for Post-Buckling Analysis of Thin-Walled Steel Members at Elevated Temperature
,”
Thin-Walled Struct.
,
136
, pp.
90
98
.10.1016/j.tws.2018.12.012
35.
Muc
,
A.
,
Chwał
,
M.
, and
Barski
,
M.
,
2018
, “
Remarks on Experimental and Theoretical Investigations of Buckling Loads for Laminated Plated and Shell Structures
,”
Compos. Struct.
,
203
, pp.
861
874
.10.1016/j.compstruct.2018.07.094
36.
García-Macías
,
E.
,
Rodríguez-Tembleque
,
L.
,
Castro-Triguero
,
R.
, and
Sáez
,
A.
,
2017
, “
Eshelby-Mori-Tanaka Approach for Post-Buckling Analysis of Axially Compressed Functionally Graded CNT/Polymer Composite Cylindrical Panels
,”
Compos. Part B: Eng.
,
128
, pp.
208
224
.10.1016/j.compositesb.2017.07.016
37.
Kiani
,
Y.
,
2017
, “
Thermal Post-Buckling of FG-CNT Reinforced Composite Plates
,”
Compos. Struct.
,
159
, pp.
299
306
.10.1016/j.compstruct.2016.09.084
38.
Ninh
,
D. G.
,
2018
, “
Nonlinear Thermal Torsional Post-Buckling of Carbon Nanotube-Reinforced Composite Cylindrical Shell With Piezoelectric Actuator Layers Surrounded by Elastic Medium
,”
Thin-Walled Struct.
,
123
, pp.
528
538
.10.1016/j.tws.2017.11.027
39.
García-Macías
,
E.
,
Guzmán
,
C. F.
,
Flores
,
E. I. S.
, and
Castro-Triguero
,
R.
,
2019
, “
Multiscale Modeling of the Elastic Moduli of CNT-Reinforced Polymers and Fitting of Efficiency Parameters for the Use of the Extended Rule-of-Mixtures
,”
Compos. Part B: Eng.
,
159
, pp.
114
131
.10.1016/j.compositesb.2018.09.057
40.
Mahmoodi
,
M. J.
, and
Vakilifard
,
M.
,
2017
, “
A Comprehensive Micromechanical Modeling of Electro-Thermo-Mechanical Behaviors of CNT Reinforced Smart Nanocomposites
,”
Mater. Des.
,
122
, pp.
347
365
.10.1016/j.matdes.2017.03.027
41.
Hasanzadeh
,
M.
,
Ansari
,
R.
, and
Hassanzadeh-Aghdam
,
M. K.
,
2019
, “
Evaluation of Effective Properties of Piezoelectric Hybrid Composites Containing Carbon Nanotubes
,”
Mech. Mater.
,
129
, pp.
63
79
.10.1016/j.mechmat.2018.11.003
42.
Tornabene
,
F.
,
Bacciocchi
,
M.
,
Fantuzzi
,
N.
, and
Reddy
,
J. N.
,
2019
, “
Multiscale Approach for Three‐Phase CNT/Polymer/Fiber Laminated Nanocomposite Structures
,”
Polym. Compos.
,
40
(
S1
), pp.
E102
E126
.10.1002/pc.24520
43.
Qin
,
B.
,
Zhong
,
R.
,
Wang
,
T.
,
Wang
,
Q.
,
Xu
,
Y.
, and
Hu
,
Z.
,
2020
, “
A Unified Fourier Series Solution for Vibration Analysis of FG-CNTRC Cylindrical, Conical Shells and Annular Plates With Arbitrary Boundary Conditions
,”
Compos. Struct.
,
232
, p.
111549
.10.1016/j.compstruct.2019.111549
44.
Shi
,
D. L.
,
Feng
,
X. Q.
,
Huang
,
Y. Y.
,
Hwang
,
K. C.
, and
Gao
,
H.
,
2004
, “
The Effect of Nanotube Waviness and Agglomeration on the Elastic Property of Carbon Nanotube-Reinforced Composites
,”
ASME J. Eng. Mater. Technol.
,
126
(
3
), pp.
250
257
.10.1115/1.1751182
45.
Mayandi
,
K.
, and
Jeyaraj
,
P.
,
2015
, “
Bending, Buckling and Free Vibration Characteristics of FG-CNT Polymer Composite Beam Under Non-Uniform Thermal Load
,”
J. Mater.: Des. Appl.
,
229
(
1
), pp.
13
28
.10.1177/1464420713493720
46.
Pandya
,
B. N.
, and
Kant
,
T.
,
1988
, “
Finite Element Analysis of Laminated Composite Plates Using a Higher-Order Displacement Model
,”
Compos. Sci. Technol.
,
32
(
2
), pp.
137
155
.10.1016/0266-3538(88)90003-6
47.
Kar
,
V. R.
, and
Panda
,
S. K.
,
2015
, “
Thermoelastic Analysis of Functionally Graded Doubly Curved Shell Panels Using Nonlinear Finite Element Method
,”
Compos. Struct.
,
129
, pp.
202
212
.10.1016/j.compstruct.2015.04.006
48.
Cook
,
R. D.
,
Malkus
,
D. S.
,
Plesha
,
M. E.
, and
Witt
,
R. J.
,
2002
,
Concepts and Applications of Finite Element Analysis
,
Wiley
, New York.
49.
Kabir
,
M. Z.
, and
Tehrani
,
B. T.
,
2017
, “
Closed-Form Solution for Thermal, Mechanical, and Thermo-Mechanical Buckling and Post-Buckling of SMA Composite Plates
,”
Compos. Struct.
,
168
, pp.
535
548
.10.1016/j.compstruct.2017.02.046
50.
Mirzaei
,
M.
, and
Kiani
,
Y.
,
2016
, “
Free Vibration of Functionally Graded Carbon Nanotube Reinforced Composite Cylindrical Panels
,”
Compos. Struct.
,
142
, pp.
45
56
.10.1016/j.compstruct.2015.12.071
51.
Mirzaei
,
M.
, and
Kiani
,
Y.
,
2016
, “
Thermal Buckling of Temperature Dependent FG-CNT Reinforced Composite Plates
,”
Meccanica
,
51
(
9
), pp.
2185
2201
.10.1007/s11012-015-0348-0
52.
Park
,
J. S.
,
Kim
,
J. H.
, and
Moon
,
S. H.
,
2004
, “
Vibration of Thermally Post-buckled Composite Plates Embedded With Shape Memory Alloy Fibers
,”
Compos. Struct.
,
63
(
2
), pp.
179
188
.10.1016/S0263-8223(03)00146-6
You do not currently have access to this content.