Abstract

In the maintenance of in-service pipelines, the use of covered electrodes is usual due to several factors such as the flexibility of welding in hard-to-reach places and its low cost. During in-service welding of pipelines, the line remains in operation, which implies more rigorous temperature gradients that can result in microstructures more susceptible to failure. The objective of this work is to relate the welding current and cooling conditions, commonly used in-service welding, with the oxygen content and the volumetric fraction of microinclusions. In this step, the effect on the oxygen content and the volumetric fraction of microinclusions are analyzed based on experimental results using the technique of factorial experiments. Bead-on-plate samples were welded under two cooling conditions, air and cooling with water, and two nominal welding currents, 86 A and 98 A. The increase in oxygen content was observed with increasing welding current and with the cooling rate. In addition, the higher cooling rate reduced the mean microinclusions size, which can suppress the formation of acicular ferrite and, consequently, reduce the toughness and the ultimate stress limit of weld metal.

References

1.
Amend, B., and Bruce
,
W. A.
,
2013
, “
Welding on In-Service Pipelines: Dispelling Popular Myths and Misconceptions
,”
J. Chem. Inf. Model.
,
53
, pp.
1689
1699
.https://silo.tips/download/avoiding-burning-through-control-the-inside-surface-temperature-not-the-pressure
2.
Bruce
,
W. A.
,
1998
,
Guidelines for Weld Deposition Repair on Pipelines
,
Pipeline Research Council International
,
Houston, TX
, pp.
1
64
.
3.
Bruce
,
W. A.
, and
Amend
,
W. E.
,
2009
, “
Guidelines for Pipeline Repair by Direct Deposition of Weld Metal
,”
WTIA/APIA Welded Pipeline Symposium
, Sydney, Australia, Apr. 3, pp.
1
18
.http://docshare01.docshare.tips/files/17370/173704593.pdf
4.
Bailey
,
N.
,
Coe
,
F.
,
Gooch
,
T.
,
Hart
,
P.
,
Jenkins
,
N.
, and
Pargeter
,
R.
,
2004
,
Welding Steels Without Hydrogen Cracking
, 2nd ed.,
Woodhead Publishing Limited
,
Cambridge UK
.
5.
Vaz
,
C.
,
Bracarense
,
A.
,
Felizardo
,
I.
, and
Pereira
,
P. E.
,
2012
, “
Impermeable Low Hydrogen Covered Electrodes: Weld, Slag and Fumes Evaluation
,”
J. Mater. Res. Technol.
,
1
(
2
), pp.
64
70
.10.1016/S2238-7854(12)70012-1
6.
Padhy
,
G. K.
, and
Komizo
,
Y.
,
2013
, “
Diffusible Hydrogen in Steel Weldments
,”
Trans. JWRI
,
42
(
1
), pp.
39
42
.http://www.jwri.osaka-u.ac.jp/publication/trans-jwri/pdf/421-07.pdf
7.
Soares
,
J. P.
,
Faria
,
P.
, and
Paranhos
,
P.
,
2017
, “
Efeito Do Arrefecimento Causado Pelo Fluido Durante a Soldagem em Operação em Tubulações Com Espessura de Parede de 6 e 11 mm
,”
Soldag. Insp.
,
22
(
3
), pp.
269
280
.10.1590/0104-9224/si2203.05
8.
Li
,
C.
,
Wang
,
Y.
,
Han
,
T.
,
Han
,
B.
, and
Li
,
L.
,
2011
, “
Microstructure and Toughness of Coarse Grain Heat-Affected Zone of Domestic X70 Pipeline Steel During In-Service Welding
,”
J. Mater. Sci.
,
46
(
3
), pp.
727
733
.10.1007/s10853-010-4803-y
9.
Li
,
C.
,
Wang
,
Y.
, and
Chen
,
Y.
,
2011
, “
Influence of Peak Temperature During In-Service Welding of API X70 Pipeline Steels on Microstructure and Fracture Energy of the Reheated Coarse Grain Heat-Affected Zones
,”
J. Mater. Sci.
,
46
(
19
), pp.
6424
6431
.10.1007/s10853-011-5592-7
10.
Di
,
X.
,
Cai
,
L.
,
Xing
,
X.
,
Chen
,
C.
, and
Xue
,
Z.
,
2015
, “
Microstructure and Mechanical Properties of Intercritical Heat-Affected Zone of X80 Pipeline Steel in Simulated In-Service Welding
,”
Acta Met. Sin.
,
28
(
7
), pp.
883
891
.10.1007/s40195-015-0272-2
11.
Beidokhti
,
B.
,
Dolati
,
A.
, and
Koukabi
,
A. H.
,
2009
, “
Effects of Alloying Elements and Microstructure on the Susceptibility of the Welded HSLA Steel to Hydrogen-Induced Cracking and Sulfide Stress Cracking
,”
Mater. Sci. Eng. A
,
507
(
1–2
), pp.
167
173
.10.1016/j.msea.2008.11.064
12.
Moro
,
I.
,
Briottet
,
L.
,
Lemoine
,
P.
,
Andrieu
,
E.
,
Blanc
,
C.
, and
Odemer
,
G.
,
2010
, “
Hydrogen Embrittlement Susceptibility of a High Strength Steel X80
,”
Mater. Sci. Eng. A
,
527
(
27–28
), pp.
7252
7260
.10.1016/j.msea.2010.07.027
13.
Albuquerque
,
S. F.
,
Maciel
,
T. M.
,
dos Santos
,
M. A.
, and
Bracarense
,
A. Q.
,
2011
, “
Avaliação da Microestrutura e Propriedades Mecânicas de Metais de Solda Obtidos Por Processos de Soldagem Manual e Automatizado Utilizado na Soldagem de Aço API 5 L X80
,”
Soldag. Insp.
,
16
(
4
), pp.
322
332
.10.1590/S0104-92242011000400003
14.
Abson
,
D. J.
, and
Pargeter
,
R. J.
,
1986
, “
Factors Influencing as-Deposited Strength, Microstructure, and Toughness of Manual Metal Arc Welds Suitable for C-Mn Steel Fabrications
,”
Int. Mater. Rev.
,
31
(
1
), pp.
141
196
.10.1179/imr.1986.31.1.141
15.
Farrar
,
R. A.
, and
Harrison
,
P. L.
,
1987
, “
Acicular Ferrite in Carbon-Manganese Weld Metals: An Overview
,”
J. Mater. Sci.
,
22
(
11
), pp.
3812
3820
.10.1007/BF01133327
16.
Grong
,
Ø.
, and
Matlock
,
D. K.
,
1986
, “
Microstructural Development in Mild and Low-Alloy Steel Weld Metals
,”
Int. Met. Rev.
,
31
(
1
), pp.
27
48
.10.1179/imtr.1986.31.1.27
17.
Ribeiro
,
A. C. N.
,
Henein
,
H.
,
Ivey
,
D. G.
, and
Brandi
,
S. D.
,
2016
, “
Evaluation of AH36 Microalloyed Steel Welded Joint by Submerged Arc Welding Process With One and Two Wires
,”
Mater. Res.
,
19
(
1
), pp.
143
152
.10.1590/1980-5373-MR-2015-0532
18.
Babu
,
S. S.
,
2004
, “
The Mechanism of Acicular Ferrite in Weld Deposits
,”
Curr. Opin. Solid State Mater. Sci.
,
8
(
3–4
), pp.
267
278
.10.1016/j.cossms.2004.10.001
19.
Wainer
,
E.
,
Brandi
,
S. D.
, and
de Mello
,
F. D. H.
,
1992
,
Soldagem: Processos e Metalurgia
, 1a ed.,
Edgar Blucher Ltda
,
São Paulo, Brazil
.
20.
ÓBrien
,
A.
,
2004
,
Welding HandBook - Welding Processes, Part 1
, 9th ed.,
American Welding Society
,
Miami, FL
.
21.
Soeiro Junior
,
J. C.
,
Rocha
,
D. B.
, and
Brandi
,
S. D.
,
2013
, “
A Brief History Review of Development on API Steels Welding for Pipeline
,”
Soldag. Insp.
,
18
(
2
), pp.
176
195
.10.1590/S0104-92242013000200011
22.
ÓBrien
,
A.
,
2011
,
Welding Handbook—Materials and Applications
, 9th ed., American Welding Society,
Miami
,
FL
.
23.
Grong
,
Ø.
,
Kluken
,
A. O.
,
Nylund
,
H. K.
,
Dons
,
A. L.
, and
Hjelen
,
J.
,
1995
, “
Catalyst Effects in Heterogeneous Nucleation of Acicular Ferrite
,”
Metall. Mater. Trans. A
,
26
(
3
), pp.
525
534
.10.1007/BF02663903
24.
Kluken
,
A. O.
, and
Grong
,
Ø.
,
1989
, “
Mechanisms of Inclusion Formation in Al-Ti-Si-Mn Deoxidized Steel Weld Metals
,”
Metall. Trans. A
,
20
(
8
), pp.
1335
1349
.10.1007/BF02665492
25.
Lee
,
T.-K.
,
Kim
,
H. J.
,
Kang
,
B. Y.
, and
Hwang
,
S. K.
,
2000
, “
Effect of Inclusion Size on the Nucleation of Acicular Ferrite in Welds
,”
ISIJ Int.
,
40
(
12
), pp.
1260
1268
.10.2355/isijinternational.40.1260
26.
Grong
,
Ø.
,
1997
,
Metallurgical Modelling of Welding
, 2nd ed.,
The Institute of Materials
, London, UK.
27.
Osio
,
A. S.
,
Liu
,
S.
, and
Olson
,
D. L.
,
1996
, “
The Effect of Solidification on the Formation and Growth of Inclusions in Low Carbon Steel Welds
,”
Mater. Sci. Eng. A
,
221
(
1–2
), pp.
122
133
.10.1016/S0921-5093(96)10466-4
28.
Rosenthal
,
D.
,
1941
, “
Mathematical Theory of Heat Distribution During Welding and Cutting
,”
Weld. J.
,
20
(
5
), pp.
220 s
234 s
.https://www.scienceopen.com/document?vid=1422f5f4-0f56-4cbb-8a27-1d2261c5a410
29.
Bruce
,
W. A.
,
2002
, “
Qualification of Procedures for Welding Onto In-Service Pipelines
,”
ASME
Paper No. IPC2002-27131.10.1115/IPC2002-27131
30.
Jo
,
B.
, and
Okamoto
,
K.
,
2017
, “
Experimental Investigation Into Creep Buckling of a Stainless Steel Plate Column Under Axial Compression at Extremely High Temperatures
,”
ASME J. Pressure Vessel Technol.
,
139
(
1
), p.
011406
10.1115/1.4033155.
31.
Pau
,
M.
, and
Baldi
,
A.
,
2007
, “
Application of an Ultrasonic Technique to Assess Contact Performance of Bolted Joints
,”
ASME J. Pressure Vessel Technol.
,
129
(
1
), pp.
175
185
.10.1115/1.2435719
32.
de Pauli
,
E. A.
,
Cotting
,
F.
,
Soeiro Junior
,
J. C.
,
Aoki
,
I. V.
, and
Brandi
,
S. B.
,
2018
, “
Welding Heat Input Influence on UNS S82441 Lean Duplex Stainless Steel Corrosion Resistance Assessed by Scanning Vibrating Electrode Technique (SVET)
,”
J. Mater. Eng. Perform.
,
27
(
12
), pp.
6389
6397
.10.1007/s11665-018-3721-z
33.
Casanova
,
J.
,
Sorger
,
G.
,
Vilaça
,
P.
, and
Brandi
,
S. D.
,
2020
, “
Microstructure and Mechanical Properties of 9% Nickel Steel Welded by FSW
,”
Int. J. Adv. Manuf. Technol.
,
111
(
11–12
), pp.
3225
3240
.10.1007/s00170-020-06313-7
34.
Swisher
,
J. H.
, and
Turkdogan
,
E. T.
,
1967
, “
Solubility, Permeability, and Diffusivity of Oxygen in Solid Iron
,”
Trans. Metall. Soc. AIME
,
239
(
4
), pp.
426
431
.
35.
Hu
,
J.
, and
Tsai
,
H. L.
,
2007
, “
Heat and Mass Transfer in Gas Metal Arc Welding. Part I: The Arc
,”
Int. J. Heat Mass Transfer
,
50
(
5–6
), pp.
833
846
.10.1016/j.ijheatmasstransfer.2006.08.025
36.
Eagar
,
T. W.
,
1978
, “
Sources of Weld Metal Oxygen Contamination During Submerged Arc Welding
,”
Weld. Res. Suppl.
,
2
(
57
), pp.
76-s
80-s
.https://app.aws.org/wj/supplement/WJ_1978_03_s76.pdf
37.
Lau
,
T.
,
Weatherly
,
G. C.
, and
McLean
,
A.
,
1985
, “
The Sources of Oxygen and Nitrogen Contamination in Submerged Arc Welding Using CaO-Al203 Based Fluxes
,”
Weld. J.
,
12
, pp.
343 s
348 s
.http://files.aws.org/wj/supplement/WJ_1985_12_s343.pdf
38.
North
,
T. H.
,
Bell
,
H. B.
, and
Nowicki
,
A.
,
1978
, “
Slag/Metal Interaction, Oxygen and Toughness in Submerged Arc Welding
,”
Weld. J. Res. Suppl.
, 3, pp.
63 s
75 s
.
39.
Arivazhagan
,
B.
, and
Kamaraj
,
M.
,
2011
, “
A Study on Factors Influencing Toughness of Basic Flux-Cored Weld of Modified 9Cr-1Mo Steel
,”
J. Mater. Eng. Perform.
,
20
(
7
), pp.
1188
1195
.10.1007/s11665-010-9757-3
40.
Brandi
,
S. D.
,
Taniguchi
,
C.
, and
Liu
,
S.
,
1991
, “
Analysis of Metal Transfer in Shielded Metal Arc Welding
,”
Weld. J.
,
70
(
10
), pp.
261 s
270 s
.
41.
Reis
,
B. H.
,
Bielefeldt
,
W. V.
, and
Vilela
,
A. C. F.
,
2014
, “
Absorption of Non-Metallic Inclusions by Steelmaking Slags—A Review
,”
J. Mater. Res. Technol.
,
3
(
2
), pp.
179
185
.10.1016/j.jmrt.2014.03.011
42.
Kou
,
S.
,
2003
,
Welding Metallurgy
, 2nd ed.,
Wiley-Interscience
, Hoboken,
NJ
.
43.
Lin
,
M. L.
, and
Eagar
,
T. W.
,
1985
, “
Influence of Arc Pressure on Weld Pool Geometry
,”
Weld. J.
, 6, pp.
163
169
.https://eagar.mit.edu/publications/Eagar045.pdf
You do not currently have access to this content.