Abstract

The large-diameter solid expandable tubular (SET) with a smaller wall thickness faces the risk of internal pressure burst and external squeeze collapse in repairing damaged casing well. The internal pressure and external squeezing resistance calculation of the tubes using the analytical method require many expansion experiments and postexpansion tensile experiments, resulting in high costs and low efficiency. This paper gives a set of laboratory expansion and postexpansion performance test, which is based on the laboratory experiment and mechanical properties of material expansion. Two materials are studied: 316 L and 20G. Then it analyses the error and causes of the error in the traditional analytical algorithm. Besides, it establishes an accurate finite element (FE) model to study the quantitative influence of expansion ratio and wall thickness on the burst strengths and collapse strengths of the tube. The results show that the toughness and hardening ratio of 316 L is better than 20G at the same expansion ratio. The numerical simulation results of the model can effectively simulate the expansion process and the mechanical properties of SET in good agreement with the laboratory test results. The expansion ratio and wall thickness affect the mechanical properties after expansion. Thus the quantitative laws of the expansion driving force, internal pressure resistance, and external squeezing resistance under different variables are summarized. To ensure the integrity of the reinforced wellbore, the expansion ratio should not exceed 12.7%. The current study lays a theoretical basis and technical support for optimizing SET and preventing downhole accidents.

References

1.
Ma
,
H. T.
, and
Ji
,
C. J.
,
2006
, “
Development and Application of Foreign Expansion Pipe Technology
,”
Pet. Petrochem. Energy
,
22
(
2
), pp.
20
24
.
2.
Xu
,
S. G.
,
Wang
,
S. K.
,
Meng
,
W. G.
,
Wang
,
C.
, and
Sun
,
Z. W.
,
2017
, “
Study of the Effect of the Expansion Cone on the Expansion Process in Solid Expandable Tubulars With Thread Joints
,”
J. Pet. Sci. Eng.
,
158
, pp.
175
185
.10.1016/j.petrol.2017.08.048
3.
Al-Abri
,
O. S.
,
Pervez
,
T.
, and
Al-Maharbi
,
M. H.
,
2015
, “
Mechanical and Microstructural Changes of Fine Grained C-Mn Steel Tubular Undergoing Down-Hole Cold Expansion Process
,”
ASME
Paper No. IMECE2015-51568.10.1115/IMECE2015-51568
4.
Al-Abri
,
O. S.
,
Pervez
,
T.
,
Al-Maharbi
,
M. H.
, and
Khan
,
R.
,
2016
, “
Microstructure Evolution of Ultra-Fine Grain Low-Carbon Steel Tubular Undergoing Radial Expansion Process
,”
Mater. Sci. Eng. A
,
654
, pp.
94
106
.10.1016/j.msea.2015.12.016
5.
Shi
,
C. H.
,
Chen
,
K. L.
,
Zhu
,
X. H.
,
Fu
,
D. Q.
,
Qi
,
Y. K.
,
Li
,
J. N.
, and
Cheng
,
F. L.
,
2021
, “
Prevention Study on Defective Solid Expandable Tubular Fracture
,”
Eng. Failure Anal.
,
121
, pp.
1
13
.10.1016/j.engfailanal.2020.105121
6.
Li
,
T.
,
Chen
,
Q.
,
Han
,
W. Y.
,
Sun
,
Q.
,
Li
,
Y. L.
,
Bi
,
X. L.
,
Tong
,
Z.
, and
Gao
,
X. Q.
,
2012
, “
Experimental Study of the External Pressure Strength of Expandable Tubular
,”
China Pet. Mach.
,
40
(
9
), pp.
12
14
.
7.
Han
,
W. Y.
,
Yan
,
X. H.
,
Li
,
Y. L.
,
Li
,
T.
,
Bi
,
X. L.
,
Sun
,
Q.
, and
Ming
,
E. Y.
,
2014
, “
Collapse Strength Study of the Solid Expandable Tubular
,”
Oil Field Equip.
,
5
, pp.
56
59
.
8.
Liao
,
X. S.
,
Qi
,
Y. K.
,
Zhu
,
X. H.
,
Cheng
,
F. L.
,
Fu
,
D. Q.
,
Shi
,
C. S.
,
Huang
,
M. L.
, and
Qin
,
F. X.
,
2019
, “
Failure Analysis and Solution Study of 203 mm Solid Expandable Tubular
,”
Eng. Failure Anal.
,
106
, pp.
104135
15
.10.1016/j.engfailanal.2019.08.001
9.
Zhu
,
X. H.
,
Cheng
,
F. L.
,
Shi
,
C. S.
,
Li
,
J. N.
, and
Chen
,
K. L.
,
2020
, “
Design and Analysis of Sealed Suspension Module Based on Solid Expandable Tubular Repair Technology
,”
J. Mech. Sci. Technol.
,
34
(
2
), pp.
681
688
.10.1007/s12206-019-1215-z
10.
Zhang
,
J. B.
,
Shi
,
T. H.
, and
Lian
,
Z. H.
,
2003
, “
Drilling Solid Expandable Tubular Technology
,” China Petroleum Machinery, 31, pp.
128
131
.
11.
Zhang
,
J. B.
,
Jia
,
Y. L.
, and
Lv
,
X. H.
,
2013
, “
Finite Element Simulations of Mechanical Properties of Solid Expandable Tubular Threaded Joint
,”
Adv. Mater. Res.
, 421, p.
258
.10.4028/www.scientific.net/AMR.421.258
12.
Lian
,
Z. H.
,
Yang
,
L.
,
Feng
,
Y. R.
,
Liu
,
Y. G.
, and
Chen
,
S. C.
,
2011
, “
End-Surface Metal Self-Sealed Design for Non-API Special Thread of Expandable Casing
,”
Oil Field Equip.
,
40
(
2
), pp.
27
29
.https://www.semanticscholar.org/paper/End-surface-Metal-Self-sealed-Design-for-Non-API-of-Shi-chun/34e178dbd34cc1ebcd301beeae0508244dcfa677
13.
Liang
,
K.
,
Lian
,
Z. H.
,
Reng
,
R. K.
,
Ding
,
L. L.
, and
Wei
,
C. X.
,
2010
, “
Numerical Approaching to Prediction of Expansion for Solid Expandable Tubules
,”
Oil Field Equip.
,
39
(
12
), pp.
1
4
.https://en.cnki.com.cn/Article_en/CJFDTOTAL-SKJX201012002.htm
14.
Al-Abri
,
O. S.
,
Pervez
,
T.
,
Qamar
,
S. Z.
, and
Khan
,
R.
,
2016
, “
On the Performance Analysis of AHSS With an Application to SET technology - FEM Simulations and Experimental Measurements
,”
Thin-Walled Struct.
,
101
(
1
), pp.
58
74
.10.1016/j.tws.2016.01.001
15.
Al-Abri
,
O. S.
, and
Pervez
,
T.
,
2013
, “
Structural Behavior of Solid Expandable Tubular Undergoes Radial Expansion Process—Analytical, Numerical, and Experimental Approaches
,”
Int. J. Solids Struct.
,
50
(
19
), pp.
2980
2994
.10.1016/j.ijsolstr.2013.05.013
16.
Al-Abri
,
O. S.
,
Pervez
,
T.
,
Al-Hiddabi
,
S. A.
, and
Qamar
,
S. Z.
,
2015
, “
Analytical Model for Stick–Slip Phenomenon in Solid Tubular Expansion
,”
J. Pet. Sci. Eng.
,
125
, pp.
218
233
.10.1016/j.petrol.2014.11.022
17.
Zhu
,
J.
,
Wierzbicki
,
T.
,
Keunhwan
,
P.
, and
Roggeband
,
S.
,
2019
, “
Characterization of the Cyclic Loading in the Tube Expansion Process
,”
Int. J. Mech. Sci.
,
150
, pp.
112
126
.10.1016/j.ijmecsci.2018.10.019
18.
Karrech
,
A.
, and
Seibi
,
A.
,
2010
, “
Analytical Model for the Expansion of Tubes Under Tension
,”
J. Mater. Process. Technol.
,
210
(
2
), pp.
356
362
.10.1016/j.jmatprotec.2009.09.024
19.
Alghamdi
,
A. A. A.
,
2001
, “
Collapsible Impact Energy Absorbers: An Overview
,”
Thin Walled Struct.
,
39
(
2
), pp.
189
213
.10.1016/S0263-8231(00)00048-3
20.
Yan
,
J. L.
,
Yao
,
S. G.
,
Xu
,
P.
,
Peng
,
Y.
,
Shao
,
H.
, and
Zhao
,
S. Z.
,
2016
, “
Theoretical Prediction and Numerical Studies of Expanding Circular Tubes as Energy Absorbers
,”
Int. J. Mech. Sci.
,
105
, pp.
206
214
.10.1016/j.ijmecsci.2015.11.022
21.
Liu
,
Y. Z.
, and
Qiu
,
X. M.
,
2018
, “
A Theoretical Model of the Shrinking Metal Tubes
,”
Int. J. Mech. Sci.
,
144
, pp.
564
575
.10.1016/j.ijmecsci.2018.06.019
22.
Yang
,
J. L.
,
Luo
,
M.
,
Hua
,
Y. L.
, and
Lu
,
G. X.
,
2010
, “
Energy Absorption of Solid Expandable Tubulars Using a Conical–Cylindrical Die: Experiments and Numerical Simulation
,”
Int. J. Mech. Sci.
,
52
(
5
), pp.
716
725
.10.1016/j.ijmecsci.2009.11.015
23.
Khan
,
R.
,
Pervez
,
T.
,
Alrasheedi
,
N. H.
,
Al-Abri
,
O.
, and
Sajid
,
A.
,
2017
, “
Effects of Expansion Ratio on Plasticity and Structural Integrity of Downhole Tubular
,”
Int. J. Pressure Vessels Pipin.
,
151
, pp.
1
10
.10.1016/j.ijpvp.2017.02.002
24.
Gao
,
X. Q.
,
Li
,
Y. L.
,
Li
,
T.
,
Bi
,
X. L.
,
Han
,
W. Y.
,
Cheng
,
Q.
, and
Wu
,
M.
,
2010
, “
An Analysis of the Inflation Pressure and Bearing Capacity of the Expansion Pipe
,”
China Pet. Mach.
,
10
, pp.
33
35
.
25.
Akhtar
,
M.
,
Qamar
,
S. Z.
,
Pervez
,
T.
, and
Al-Jahwari
,
F. K.
,
2018
, “
Performance Evaluation of Swelling Elastomer Seals
,”
J. Pet. Sci. Eng.
,
165
, pp.
127
135
.10.1016/j.petrol.2018.01.064
26.
Chen
,
L. Q.
,
Yang
,
D.
,
Long
,
A. W.
, and
Chen
,
M.
,
2015
, “
Calculation of Solid Expandable Tubular Expansion Force and Finite Element Analysis Based on Pipe Drawing
,”
Autom. Appl.
,
3
, pp.
31
33
.+41.
27.
Pervez
,
T.
,
Qamar
,
S. Z.
,
Seibi
,
A. C.
, and
Al-Jahwari
,
F. K.
,
2008
, “
Use of SET in Cased and Open Holes: Comparison Between Aluminum and Steel
,”
Mater. Des.
,
29
(
4
), pp.
811
817
.10.1016/j.matdes.2007.01.009
28.
2020, “
Pressure Piping Code-Industrial Piping-Part 3: Design and Calculation
,” Standard No. GB/T20801.3-2020.
29.
2018, “
Calculating Performance Properties of Pipe Used as Casing or Tubing
,” Standard No. API TR 5C3-2018.
30.
1990, “
BS EN 10045-1:1990 Charpy Impact Test on Metallic Materials
,” Standard No. BS EN 10045-1:1990.
You do not currently have access to this content.