Abstract

In engineering, many pressure pipes are made of steels with good plasticity, which are subject to internal pressure, axial force, shear force, bending moment, torsion moment or their combined loads. The plastic limit load is an important indicator of the load capacity of pressure pipe. According to Hill yield function, the theoretical solutions of limit load of orthotropic cylindrical pipe under various combined loads under internal pressure, axial force, shear force, torsion moment, and bending moment have been derived on the basis of elastic perfectly plastic constitutive model. The effects of radial stress on different combined limit loads of cylindrical pipe are explored and these results show that the radial stress should be considered about the limit load calculation especially for thick-walled cylindrical pipe. The interactions of various load combination are analyzed in detail and drawn with the interaction curves. For isotropic cylindrical pipe, the limit load increases with the yield strength. For the orthotropic cylindrical pipe, the limit loads of cylindrical pipe under axial force, bending moment, shear force, and torsion moment without internal pressure are only related to the axial yield strength. The limit bending moment is mainly dependent on the axial yield strength when internal pressure is lower, while the impact of the circumferential yield strength of orthotropic cylindrical pipe is obvious when internal pressure is some higher. When the axial yield strength of orthotropic cylindrical pipe is the same, the circumferential yield strength can enhance the limit axial load, limit torsion moment, and limit shear load. Under the different load conditions including internal pressure, bending moment, axial force, shear force, and torsion moment or their combined loads, the relation of limit bending moment with yield strength ratio is diverse, which is decide by the load combination, the circumferential yield strength, and the axial yield strength.

References

1.
Oh
,
C.-K.
,
Kim
,
Y.-J.
,
Kim
,
J.-S.
, and
Jin
,
T.-E.
,
2008
, “
Yield Locus for Circumferential Part-Through Surface Cracked Pipes Under Combined Pressure and Bending
,”
Eng. Fract. Mech.
,
75
(
8
), pp.
2175
2190
.10.1016/j.engfracmech.2007.10.006
2.
Mohareb
,
M.
, and
Murray
,
D. W.
,
1999
, “
Mobilization of Fully Plastic Moment Capacity for Pressurized Pipes
,”
ASME J. Offshore Mech. Arct. Eng.
,
121
(
4
), pp.
237
241
.10.1115/1.2829573
3.
Mohareb
,
M.
,
2002
, “
Plastic Interaction Relations for Pipe Sections
,”
J. Waterw., Port, Coastal Ocean Eng.
,
128
(
1
), pp.
112
120
.10.1061/(ASCE)0733-9399(2002)128:1(112)
4.
Rahimi
,
G. H.
, and
Alashti
,
R. A.
,
2007
, “
Lower Bound to Plastic Load of Cylinders With Opening Under Combined Loading
,”
Thin-Walled Struct.
,
45
(
3
), pp.
363
370
.10.1016/j.tws.2006.10.008
5.
Gao
,
Z.
,
Cai
,
G.
,
Liang
,
L.
, and
Lei
,
Y.
,
2008
, “
Limit Load Solutions of Thick-Walled Cylinders With Fully Circumferential Cracks Under Combined Internal Pressure and Axial Tension
,”
Nucl. Eng. Des.
,
238
(
9
), pp.
2155
2164
.10.1016/j.nucengdes.2008.03.001
6.
Wang
,
F.
, and
Gao
,
Z. L.
,
2012
, “
Limit Load for Thick-Walled Cylinder With Circumferential Cracks Under Combined  Mechanical Loads
,”
Light Ind. Mach.
,
30
(
1
), pp.
27
34
.
7.
Ozkan
,
I.
, and
Mohareb
,
M.
,
2003
, “
Testing of Steel Pipes Under Bending, Twist and Shear
,”
J. Struct. Eng.
,
129
(
10
), pp.
1350
1357
.10.1061/(ASCE)0733-9445(2003)129:10(1350)
8.
Chen
,
Y-F.
,
Zhang
,
J.
,
Zhang
,
H.
,
Liu
,
X-B.
,
Li
,
X.
,
Zhou
,
J.
, and
Cao
,
J.
,
2015
, “
Ultimate Load Capacity of Offshore Pipeline With Arbitrary Shape Corrosion Defects
,”
China Ocean Eng.
,
29
(
2
), pp.
241
252
.10.1007/s13344-015-0017-z
9.
Chen
,
Y. F.
,
2009
,
Research on the Destruction Mechanism and Limit Bearing Capacity of Submarine Corroded Pipe [D]
,
Dalian University of Technology
, Liaoning, China. 
10.
Schaumann
,
P.
,
Keindorf
,
C.
, and
Bruggemann
,
H.
,
2005
, “
Elastoplastic Behavior and Buckling Analysis of Steel Pipelines Exposed to Internal Pressure and Additional Loads
,”
ASME
Paper No. OMAE2005-67303.10.1115/OMAE2005-67303
11.
Bai
,
Y.
, and
Igland
,
R. T.
,
1994
, “
MoanT. Ultimate Limit States of Pipes Under Tension and Bending
,”
Int. J. Offshore Polar Eng.
,
4
(
4
), pp.
312
319
.https://www.onepetro.org/journal-paper/ISOPE-94-04-4-312
12.
Guo
,
C. X.
,
1999
, “
Plastic Collapse Load Analysis of Circumferentially Cracked Pipes Under Combined Loads of Axial Force, Bending Moment, Torsion and Internal Pressure
,”
Pressure Vessel Technol.
2, pp.
1
7
13.
Shu
,
H. M.
,
2002
, “
The Plastic Limit Load of Circumferentially Cracked Thin-Walled Pipes Under Axial Force, Internal Pressure and Asymmetrical Bending
,”
Int. J. Pressure Vessels Piping
,
5
(
79
), pp.
377
382
.10.1016/S0308-0161(02)00018-2
14.
Kim
,
Y. J.
, and
Oh
,
C. S.
,
2006
, “
Limit Loads for Pipe Bends Under Combined Pressure and in-Plane Bending Based on Finite Element Limit Analysis
,”
Int. J. Pressure Vessels Piping
,
83
(
2
), pp.
148
153
.10.1016/j.ijpvp.2005.11.001
15.
Oh
,
C. K.
,
Kim
,
Y. J.
, and
Park
,
C. Y.
,
2009
, “
Effects of Local Wall Thinning on Net-Section Limit Loads for Pipes Under Combined Pressure and Bending
,”
Nucl. Eng. Des.
,
239
(
2
), pp.
261
273
.10.1016/j.nucengdes.2008.10.019
16.
Iob
,
F.
,
Campanelli
,
F.
, and
Coppola
,
T.
,
2015
, “
Modelling of Orthotropic Hardening Behavior for the Fracture Prediction in High Strength Steel Line Pipes
,”
Eng. Fract. Mech.
,
148
, pp.
363
382
.10.1016/j.engfracmech.2015.04.030
17.
Corona
,
E.
,
Lee
,
L. H.
, and
Kyriakides
,
S.
,
2006
, “
Yield Anisotropy Effects on Buckling of Circular Tubes Under Bending
,”
Int. J. Solids Struct.
,
43
(
22–23
), pp.
7099
7118
.10.1016/j.ijsolstr.2006.03.005
18.
Hauch
,
S. R.
, and
Bai
,
Y.
,
2000
, “
Bending Moment Capacity of Pipes
,”
ASME J. Offshore Mech. Arct. Eng.
,
122
(
4
), pp.
243
252
.10.1115/1.1314866
19.
Bai
,
Y.
,
Igland
,
R.
, and
Moan
,
T.
,
1993
, “
Tube Collapse Under Combined Pressure, Tension and Bending
,”
Int. J. Offshore Polar Eng.
,
3
(
2
), pp.
121
129
.https://www.onepetro.org/journal-paper/ISOPE-93-03-2-121
20.
Bai
,
Y.
,
Igland
,
R. T.
, and
Moan
,
T.
,
1997
, “
Tube Collapse Under Combined External Pressure, Tension and Bending
,”
Mar. Struct.
,
10
(
5
), pp.
389
410
.10.1016/S0951-8339(97)00003-8
21.
Chen
,
Y-F.
,
Zhang
,
J.
,
Zhang
,
H.
,
Li
,
X.
,
Zhou
,
J.
, and
Cao
,
J.
,
2016
, “
Ultimate Bending Capacity of Strain Hardening Steel Pipes
,”
China Ocean Eng.
,
30
(
2
), pp.
231
241
.10.1007/s13344-016-0014-x
22.
Su
,
C-L.
,
Li
,
X.
, and
Zhou
,
J.
,.
2016
, “
Failure Pressure Analysis of Corroded Moderate-to-High Strength Pipelines
,”
China Ocean Eng.
,
30
(
1
), pp.
69
82
.10.1007/s13344-016-0004-z
23.
Wang
,
H. P.
,
Li
,
X.
, and
Zhou
,
J.
,
2017
, “
Analytical Solution of Ultimate Bending Capacity of Pipeline Considering Ovalization and Material Anisotropy
,”
China Ocean Eng.
,
35
(
1
), pp.
71
79
.
24.
Li
,
H. X.
,
Liu
,
Y. H.
,
Feng
,
X. Q.
, and
Cen
,
Z. Z.
,
2001
, “
Upper Bound Analysis of Plastic Limit Loads on Orthotropic Structures
,”
J. Tsinghua Univ.
,
41
(
8
), pp.
71
74
. https://www.researchgate.net/publication/281526929_Upper_bound_analysis_ of_plastic_limit_loads_on_orthotropic_structures
25.
Qu
,
W. J.
,
Zhou
,
C. Y.
, and
Yu
,
Q.
,
2018
, “
Failure Assessment Curve of the Circumferential Through-Wall Cracked Orthotropic TA2 Pipe
,”
Rare Met. Mater. Eng.
,
48
(
4
), pp.
1051
1058
.http://www.rmme.ac.cn/rmmeen/ch/reader/view_abstract.aspx?file_no=20171072
26.
Yu
,
Q.
,
Zhou
,
C.-Y.
,
Wang
,
Z.-W.
, and
He
,
X.-H.
,
2018
, “
Analytical Solution for Limit Load of Orthotropic Pressure Pipe With Internal Circumferential Crack
,”
Int. J. Mech. Sci.
,
149
, pp.
201
211
.10.1016/j.ijmecsci.2018.09.002
27.
Hill
,
R.
,
1983
,
The Mathematical Theory of Plasticity
,
Clarendon Press
, Oxford, UK.
You do not currently have access to this content.