Abstract

Grade 91 steel is widely used as steam pipes in ultrasupercritical (USC) steam boilers. In residual creep life assessment of the pipes by calculation, one needs creep rupture life of the steel as a function of stress and temperature in a time range longer than 105 h. Four regions with different creep rupture characteristics appear in a stress versus creep rupture life diagram of the steel. Main steam pipes made of the steel are used in a long-term region with low values of stress exponent and activation energy for creep rupture life (referred to as region G in this paper). Creep rupture lives of the steel in this region vary from heat to heat depending on their prior austenite grain size. This paper proposes a grain size-dependent equation representing creep rupture life of the steel in region G. The equation is verified with creep rupture data up to 232,833 h at 600 °C. Region G is absent in some heats with a large grain size. The equation can rationalize the absence in the heats. In a stress versus creep rupture life diagram of grade 92 steel, there is the same long-term region G. In the region, a creep rupture life of each heat is dependent on its grain size as is the case in grade 91 steel. The proposed equation accords well with the creep rupture lives of the grade 92 steel in region G.

References

1.
EPRI
,
2014
, “
The Benefits of Improved Control of Composition of Creep-Strength-Enhanced Ferritic Steel Grade 91
,”
Electric Power Research Institute
,
Palo Alto, CA
,
Report No. 3002003472
.https://www.academia.edu/34646514/THE_BENEFITS_OF_IMPROVED_CONTROL_OF_COMPOSITION_OF_CREEP-STRENGTH-_ENHANCED_FERRITIC_STEEL_GRADE_91
2.
Yaguchi
,
M.
,
2019
, “
Remaining Life Assessment Technologies for Weldment of High Chromium Steel Pipe
,”
Bull. Iron Steel Inst. Jpn.
,
24
(
2
), pp.
73
79
.
3.
Maruyama
,
K.
,
Nakamura
,
J.
, and
Yoshimi
,
K.
,
2016
, “
Assessment of Long-Term Creep Rupture Strength of T91 Steel by Multiregion Rupture Data Analysis
,”
ASME J. Pressure Vessel Technol.
,
138
(
3
), p.
031407
.10.1115/1.4032647
4.
Kimura
,
K.
, and
Yaguchi
,
M.
,
2016
, “
Re-Evaluation of Long-Term Creep Strength of Base Metal of ASME Grade 91 Type Steel
,”
ASME Paper No. PVP2016-63355
.10.1115/PVP2016-63355
5.
The ASME BPV II, Working Group on CSEF Steels, Task Group on Grade 91, Swindeman, R., Chair
,
2017
, “
Analysis of the Grade 91 Stress Rupture Database
,”
Working Group-Creep Strength Enhanced Ferritic Steels, ASME Boiler and Pressure Vessel Code
Week, Atlanta, GA
, Feb. 12–17.
6.
Maruyama
,
K.
,
Sekido
,
N.
, and
Yoshimi
,
K.
,
2017
, “
A Postassessment Test of 100,000 h Creep Rupture Strength of Grade 91 Steel at 600 °C
,”
ASME J. Pressure Vessel Technol.
,
139
(
5
), p.
051404
.10.1115/1.4037446
7.
Abe
,
F.
,
2010
, “
Heat-to-Heat Variation in Long-Term Creep Strength of Some Ferritic Steels
,”
Intern. J. Pressure Vessel Piping
,
87
(
6
), pp.
310
318
.10.1016/j.ijpvp.2010.03.014
8.
Maruyama
,
K.
,
Nakamura
,
J.
,
Sekido
,
N.
, and
Yoshimi
,
K.
,
2017
, “
Causes of Heat-to-Heat Variation of Creep Strength in Grade 91 Steel
,”
Mater. Sci. Eng. A
,
696
, pp.
104
112
.10.1016/j.msea.2017.04.050
9.
NIMS
,
2014
, “
Data Sheets of the Elevated-Temperature Properties of 9Cr-1Mo-V-Nb Steel Tubes for Boilers and Heat Exchangers, 9Cr-1Mo-V-Nb Steel Plates for Boilers and Pressure Vessels and 9Cr-1Mo-V-Nb Seamless Pipe for High Temperature Service
,” National Institute for Materials Science,
Tsukuba, Japan
, NIMS Creep Data Sheet No. 43A.
10.
Kato
,
S.
,
Furukawa
,
T.
, and
Yoshida
,
E.
,
2009
, “
Material Test Data of Mod. 9Cr-1Mo Steel (1)
,”
Japan Atomic Energy Agency
,
Tokai-mura, Japan
,
JAEA-Data/Code 2008-030
.
11.
Toyama
,
A.
, and
Minami
,
Y.
,
1993
, “
Creep Rupture Strength and Long-Term Aging Properties of 9Cr-1Mo-NbV Heat Resistant Steel
,”
Report of the 123rd Committee of Japan Society for the Promotion of Science on Heat-Resisting Materials and Alloys
,
34
(
1
), pp.
23
29
.
12.
Chen
,
R. P.
,
Ghassemi Armaki
,
H.
,
Yoshimi
,
K.
,
Maruyama
,
K.
,
Minami
,
Y.
, and
Igarashi
,
M.
,
2010
, “
Premature Creep Rupture and Overestimation of Rupture Life in Modified 9Cr-1Mo Steel
,”
Tetsu-to-Hagane
,
96
(
9
), pp.
564
571
.10.2355/tetsutohagane.96.564
13.
Yamamoto
,
Y.
,
2017
, “
Analysis on ASME Grade 91 Type Steel Creep Ruptured at 600 °C/233kh
,”
CAMP-ISIJ
,
30
(
2
), p.
913
.
14.
Haney
,
E. M.
,
Dalle
,
F.
,
Sauzay
,
M.
,
Vincent
,
L.
,
Tournie
,
I.
,
Allais
,
L.
, and
Fournier
,
B.
,
2009
, “
Macroscopic Results of Long-Term Creep on a Modified 9Cr-1Mo Steel (T91)
,”
Mater. Sci. Eng. A
,
510-511
, pp.
99
103
.10.1016/j.msea.2008.04.099
15.
Choudhary
,
B. K.
,
2013
, “
Tertiary Creep Behavior of 9Cr-1Mo Steel
,”
Mater. Sci. Eng. A
,
585
, pp.
1
9
.10.1016/j.msea.2013.07.026
16.
Abe
,
F.
,
2015
, “
Creep Behavior, Deformation Mechanisms, and Creep Life of Mod.9Cr-1Mo Steel
,”
Met. Mater. Trans.
,
46A
(
11
), pp.
5610
5625
10.1007/s11661-015-3144-5.
17.
Guguloth
,
K.
,
Swaminathan
,
J.
,
Roy
,
N.
, and
Ghosh
,
R. N.
,
2017
, “
Uniaxial Creep and Stress Relaxation Behavior of Modified 9Cr-1Mo Steel
,”
Mater. Sci. Eng. A
,
684
, pp.
683
696
.10.1016/j.msea.2016.12.090
18.
Maruyama
,
K.
,
Ghassemi Armaki
,
H.
,
Chen
,
R. P.
,
Yoshimi
,
K.
,
Yoshizawa
,
M.
, and
Igarashi
,
M.
,
2010
, “
Cr Concentration Dependence of Overestimation of Long Term Creep Life in Strength Enhanced High Cr Ferritic Steels
,”
Int. J. Pressure Vessels Piping
,
87
(
6
), pp.
276
281
.10.1016/j.ijpvp.2010.03.012
19.
Chen
,
R. P.
,
Ghassemi Armaki
,
H.
,
Maruyama
,
K.
, and
Igarashi
,
M.
,
2011
, “
Long-Term Microstructural Degradation and Creep Strength in Gr. 91 Steel
,”
Mater. Sci. Eng. A
,
528
(
13–14
), pp.
4390
4394
.10.1016/j.msea.2011.02.060
20.
Maruyama
,
K.
,
Sekido
,
N.
, and
Yoshimi
,
K.
,
2019
, “
Changes in Monkman-Grant Relation Among Four Creep Regions of Modified 9Cr-1Mo Steel
,”
Mater. Sci. Eng. A
,
749
, pp.
223
234
.10.1016/j.msea.2019.02.003
21.
Kako
,
K.
,
Yamada
,
S.
,
Yaguchi
,
M.
, and
Minami
,
Y.
,
2018
, “
Microstructures of 9Cr-1Mo-VNb Steel Under Long-Term Creep Conditions
,”
Report of the 123rd Committee of Japan Society for the Promotion of Science on Heat-Resisting Materials and Alloys
,
59
(
1
), pp.
61
66
.
22.
Kimura
,
K.
,
Sawada
,
K.
,
Kushima
,
H.
, and
Toda
,
Y.
,
2013
, “
Influence of Chemical Composition and Heat Treatment on Long-Term Creep Strength of Grade 91 Steel
,”
Procedia Eng.
,
55
, pp.
2
9
.10.1016/j.proeng.2013.03.211
23.
ASME,
2016
, “
9Cr-1Mo-V Material
,”
ASME
,
New York, NY
, ASME Boiler and Pressure Vessel Code Case 2864.
24.
Murata
,
Y.
,
Yamashita
,
K.
,
Morinaga
,
M.
,
Hara
,
T.
,
Miki
,
K.
,
Azuma
,
T.
,
Ishiguro
,
T.
, and
Hashizume
,
R.
,
2009
, “
Dependence of Precipitation Behavior and Creep Strength on Cr Content in High Cr Ferritic Heat Resistant Steels
,”
J. Solid Mech. Mater. Eng.
,
3
(
3
), pp.
457
463
.10.1299/jmmp.3.457
25.
Miki
,
K.
,
Azuma
,
T.
,
Ishiguro
,
T.
,
Tamura
,
O.
,
Hashizume
,
R.
,
Murata
,
Y.
, and
Morinaga
,
M.
,
2011
, “
Development of Heat Resistant Ferritic Steels Containing 8.5–11.5% Cr Based on Long-Term Creep Rupture Strength
,”
Proceedings of the 18th International Forgemasters Meeting
,
Pittsburg, PA
, Sept. 12–15, pp.
211
214
.
26.
Ghassemi-Armaki
,
H.
,
Chen
,
R.
,
Maruyama
,
K.
, and
Igarashi
,
M.
,
2011
, “
Creep Behavior and Degradation of Subgrain Structures Pinned by Nanoscale Precipitates in Strength-Enhanced 5 to 12 Pct Cr Ferritic Steels
,”
Metall. Mater. Trans.
,
42A
(
10
), pp.
3084
3094
.10.1007/s11661-011-0726-8
27.
Ghassemi-Armaki
,
H.
,
Chen
,
R.
,
Maruyama
,
K.
, and
Igarashi
,
M.
,
2010
, “
Premature Creep Failure in Strength Enhanced High Cr Ferritic Steels Caused by Static Recovery of Tempered Martensite Lath Structures
,”
Mater. Sci. Eng. A
,
527
, pp.
6581
6588
.10.1016/j.msea.2010.07.037
28.
Ghassemi-Armaki
,
H.
,
Chen
,
R. P.
,
Maruyama
,
K.
, and
Igarashi
,
M.
,
2013
, “
Contribution of Recovery Mechanisms of Microstructure During Long-Term Creep of Gr.91 Steels
,”
J. Nucl. Mater.
,
433
(
1–3
), pp.
23
29
.10.1016/j.jnucmat.2012.09.026
29.
Sawada
,
K.
,
Sekido
,
K.
,
Kimura
,
K.
,
Arisue
,
K.
,
Honda
,
M.
,
Komai
,
N.
,
Fukuzawa
,
N.
,
Ueno
,
T.
,
Shimohata
,
N.
,
Nakatomi
,
H.
,
Takagi
,
K.
,
Kimura
,
T.
,
Nomura
,
K.
, and
Kubushiro
,
K.
,
2019
, “
Effect of Initial Microstructure on Creep Strength of ASME Grade T91 Steel
,”
Tetsu-to-Hagane
,
105
(
4
), pp.
433
442
.10.2355/tetsutohagane.TETSU-2018-066
30.
Yoshida
,
K.
,
Tsuruta
,
H.
,
Tabuchi
,
M.
, and
Kobayashi
,
K.-I.
,
2016
, “
Creep Damage Evaluation Method for Welded Joints of Grade 91 Steels
,”
Advances in Materials Technology for Fossil Power Plants
,
J.
Parker
,
J.
Shingledecker
, and
J.
Siefert
, eds.,
ASM Intern
,
Materials Park, OH
, pp.
545
556
.
31.
Terada
,
Y.
,
Matsuo
,
T.
, and
Kikuchi
,
M.
,
1993
, “
Effect of Grain Boundaries on Creep Deformation in Austenitic Alloys
,”
Aspects of High Temperature Deformation and Fracture in Crystalline Materials
,
Y.
Hosoi
,
H.
Yoshinaga
,
H.
Oikawa
, and
K.
Maruyama
, eds.,
The Japan Institute of Metals
,
Sendai, Japan
, pp.
27
34
.
32.
Langdon
,
T. G.
,
1994
, “
A Unified Approach to Grain Boundary Sliding in Creep and Superplasticity
,”
Acta Metall. Mater.
,
42
(
7
), pp.
2437
2443
.10.1016/0956-7151(94)90322-0
33.
Owen
,
D. M.
, and
Langdon
,
T. G.
,
1996
, “
Low Stress Creep Behavior: An Examination of Nabarro-Herring and Harper-Dorn Creep
,”
Mater. Sci. Eng. A
,
216
(
1–2
), pp.
20
29
.10.1016/0921-5093(96)10382-8
34.
Oikawa
,
H.
, and
Iijima
,
Y.
,
2008
, “
Diffusion Behavior of Creep-Resistant Steels
,”
Creep-Resistant Steels
,
F.
Abe
,
T.
Kern
, and
R.
Viswanathan
, eds.,
Woodhead Publishing
,
Cambridge, UK
, pp.
241
264
. https://books.google.co.in/books?hl=en&lr=&id=koykAgAAQBAJ&oi=fnd&pg=PA241&dq=Diffusion+Behavior+of+Creep-Resistant+Steels&ots=_DuysxFLDU&sig=v-sJT0LMoZQhj3XQsiujqdrG9yc#v=onepage&q=Diffusion%20Behavior%20of%20Creep-Resistant%20Steels&f=false
35.
Swindeman
,
R. W.
,
Swindeman
,
M. J.
,
Roberts
,
B. W.
,
Thurgood
,
B. E.
, and
Marriott
,
D. L.
,
2009
, Verification of Allowable Stresses in ASME Section III Subsection NH for Grade 91 Steel,
ASME Standards Technology
,
LLC, New York
,
ASME ST LLC Report No. STP-NU-019-1
.https://www.asme.org/getmedia/9345a0eb-1e15-4a91-ae59-12fea6ea5dda/20377.pdf
36.
Maruyama
,
K.
,
2019
, “
Reliable Evaluation of Long-Term Creep Properties at Elevated Temperature
,”
Tetsu-to-Hagane
,
105
(
8
), pp.
767
777
.10.2355/tetsutohagane.TETSU-2019-006
37.
Maruyama
,
K.
,
2008
, “
Fracture Mechanism Map and Fundamental Aspects of Creep Fracture
,”
Creep-Resistant Steels
,
F.
Abe
,
T.
Kern
, and
R.
Viswanathan
, eds.,
Woodhead Publishing
,
Cambridge, UK
, pp.
350
364
.10.1533/9781845694012.2.350
38.
Bendick
,
W.
,
Cipolla
,
L.
,
Gabrel
,
J.
, and
Hald
,
J.
,
2009
, “
New ECCC Assessment of Creep Rupture Strength for Steel Grade X10CrMoVNb9-1 (Grade 91)
,”
Creep and Fracture in High Temperature Components
,
I. A.
Shibli
, and
S. R.
Holdsworth
, eds.,
DEStech Publications
,
Lancaster, PA
, pp.
56
67
10.1016/j.ijpvp.2010.03.010.
39.
Kimura
,
K.
, and
Sawada
,
K.
,
2017
, “
Influence of Chemical Composition and Materials Processing on Creep Strength of Grade 91 Steels
,”
Proceedings of the Fourth International ECCC Conference
,
Dusseldorf, Germany
, Sept. 10–14, Paper No. 51.
40.
Maruyama
,
K.
,
Nakamura
,
J.
, and
Yoshimi
,
K.
,
2014
, “
Change in Temperature Dependence of Creep Rupture Life of High Cr Ferritic Steel
,”
Tetsu-to-Hagane
,
100
(
3
), pp.
414
420
.10.2355/tetsutohagane.100.414
41.
NIMS
,
2018
, “
Data Sheets of the Elevated-Temperature Properties of 9Cr-0.5Mo-1.8W-V-Nb Steel Tubes for Boilers (ASME SA-213/SA213M Grade T92) and 9Cr-0.5Mo-1.8W-V-Nb Steel Pipe for High Temperature Service (ASME SA335/SA-335M Grade P92)
,”
National Institute for Materials Science
,
Tsukuba, Japan
, NIMS Creep Data Sheet No. 48B.
42.
Maruyama
,
K.
,
Sekido
,
N.
, and
Yoshimi
,
K.
,
2019
, “
Changes in Strengthening Mechanisms in Creep of Grade 92 Steel
,” Epub.
43.
Hald
,
J.
,
1995
, “
Materials Comparisons Between NF616, HCM12A and TB12M—III Microstructural Stability and Ageing
,”
New Steels for Advanced Plant Up to 600 °C
,
M.
Metcalfe
, ed.,
Electric Power Research Institute
,
Palo Alto, CA
, pp.
152
173
.
You do not currently have access to this content.