A kinetics model for temper embrittlement was employed as the basis for predicting the fracture appearance transition temperature (FATT) of 2.25Cr-1Mo steel used for hot-wall hydrofining reactors. Various heat treatments were performed to obtain different degrees of temper embrittlement for the steel. Charpy V-notch impact tests and Auger electron spectroscopy analysis were performed on embrittled 2.25Cr-1Mo steels to establish the relation between the shift of FATT and the change in the concentration of phosphorus segregated in the grain boundary of the steel. Based on the model and test data, a method of predicting the FATT at service time t was developed for the 2.25Cr-1Mo steel. Good agreement is obtained when the predicted values are compared to test data from open literature.

1.
Scott
,
T. E.
,
Sangdahl
,
G. S.
, and
Semchyshen
,
M.
, eds., 1982,
Application of 2 1∕4Cr-1Mo Steel for Thick-Wall Pressure Vessels
,
American Society for Testing and Materials
,
Philadelphia
, ASTM STP755, pp.
283
417
.
2.
Task Group II of the Subcommittee on Hydrogen Embrittlement of Japan Pressure Vessel Research Council
, 1985, “
Embrittlement of Pressure Vessels in High Temperature High Pressure Hydrogen Embrittlement
,”
Weld. Res. Counc. Bull.
0043-2326,
305
, pp.
9
21
.
3.
Moss
,
C. J.
, and
Kelly
,
P. M.
, 1994, “
Mechanisms and Detection of Embrittlement in Cr–Mo Pressure Vessel Steels
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
17
(
3
), pp.
369
380
.
4.
Buscemi
,
C. D.
,
Jack
,
B. L.
,
Skogsberg
,
J. W.
, and
Erwin
,
W. E.
, 1991, “
Temper Embrittlement in 2-1∕4 Cr-1Mo Steels After 75,000-Hour Isothermal Aging
,”
ASME J. Eng. Mater. Technol.
0094-4289,
113
, pp.
329
335
.
5.
Tan
,
J.
, and
Chao
,
Y. J.
, 2005, “
Effect of Service Exposure on the Mechanical Properties of 2.25Cr-1Mo Pressure Vessel Steel in A Hot-Wall Hydrofining Reactor
,”
Mater. Sci. Eng., A
0921-5093,
405
(
1–2
), pp.
214
220
.
6.
Song
,
S.
, and
Xu
,
T.
, 1994, “
Combined Equilibrium and Non-Equilibrium Segregation Mechanism of Temper Embrittlement
,”
J. Mater. Sci.
0022-2461,
29
, pp.
61
66
.
7.
Yaguchi
,
H.
,
Murakami
,
S.
,
Fujitsuna
,
N.
,
Shinya
,
T.
,
Yamada
,
M.
, and
Sakai
,
T.
, 2004, “
Long-Term Isothermal Aging Behavior of V-Modified 2.25Cr-1Mo Steels
,” PVP-490,
Pressure Vessel and Piping Division, ASME
, pp.
161
176
.
8.
Iwadate
,
T.
,
Tanaka
,
Y.
, and
Takemata
,
H.
, 1994, “
Prediction of Fracture Toughness KIC Transition Curves of Pressure Vessel Steels From Charpy V-Notch Impact Test Results
,”
ASME J. Pressure Vessel Technol.
0094-9930,
116
, pp.
353
358
.
9.
Sakai
,
T.
,
Yamada
,
M.
,
Nose
,
S.
, and
Bagdasarain
,
A. J.
, 2000, “
New Chemistry-Based Predictive Tool for Temper Embrittlement of 2 1∕4Cr-1Mo Weld Materials
,” PVP-411,
Pressure Vessel and Piping Division, ASME
, pp.
241
244
.
10.
Tan
,
J.
, 2003, “
A Test Study on Damage Mechanism to Material Used in Hydrogenation Reactors
,”
Petro-Chem. Equip.
,
32
(
3
), pp.
9
11
(in Chinese).
11.
Tan
,
J.
, 2004, “
Kinetics of Temper Embrittlement in 2.25Cr-1Mo Steel Used for Hot-Wall Hydrofining Reactors
,”
Acta Mech. Sin.
0459-1879,
17
(
2
), pp.
139
146
.
12.
Mclean
,
D.
, 1957,
Grain Boundaries in Metals
,
Oxford University Press
,
London
.
13.
Xu
,
T.
, 1987, “
Non-Equilibrium Grain-Boundary Segregation Kinetics
,”
J. Mater. Sci.
0022-2461,
22
, pp.
337
345
.
14.
Xu
,
T.
, and
Song
,
S.
, 1989, “
A Kinetics Model of Non-Equilibrium Grain-Boundary Segregation
,”
Acta Metall.
0001-6160,
39
(
9
), pp.
2499
2506
.
15.
Xu
,
T.
, and
Cheng
,
B.
, 2004, “
Kinetics of Non-Equilibrium Grain-Boundary Segregation
,”
Prog. Mater. Sci.
0079-6425,
49
(
2
), pp.
109
208
.
16.
Song
,
S. H.
,
Yuan
,
Z. X.
,
Shen
,
D. D.
,
Liu
,
J.
, and
Weng
,
L. Q.
, 2004, “
Grain Boundary Segregation of Phosphorus and Molybdenum in A Cr–Mo Low Alloy Steel
,”
Mater. Sci. Technol.
0267-0836,
20
, pp.
117
120
.
17.
Tan
,
J.
,
Wu
,
B.
,
Tang
,
C.
,
Jiang
,
Y.
,
Zhang
,
Y.
, and
Zhang
,
B.
, 1998, “
Study on Temper Embrittlement of Test Block Within Hydrgenation Reactor in Service
,”
J. Pressure Vessel Technol.
0094-9930,
15
(
2
), pp.
27
31
(in Chinese).
18.
Guttmann
,
M.
,
Dumoulin
,
P.
, and
Wayman
,
M.
, 1982, “
The Thermodynamics of Interaction Co-Segregation of Phosphorus and Alloying Elements in Iron and Temper-Brittle Steels
,”
Metall. Trans. A
0360-2133,
13
, pp.
1693
1711
.
19.
Ogura
,
T.
, 1981, “
A Method for Evaluation of the Mount of Grain-Boundary Segregation During Quenching
,”
Trans. Jpn. Inst. Met.
0021-4434,
22
(
2
), pp.
109
117
.
20.
Vorlicek
,
V.
, and
Flewitt
,
D. E. P.
, 1994, “
Cooling Induced Segregation of Impurity Elements to Grain Boundary in Fe-3wt%Ni Alloys, 2 1∕4wt%Cr-1wt%Mo Steel and Submerged Arc Weld Metal
,”
Acta Metall. Mater.
0956-7151,
42
(
10
), pp.
3309
3320
.
21.
Chapman
,
M. A. V.
, and
Faulner
,
R. J.
, 1983, “
Computer Modeling of Grain Boundary Segregation
,”
Acta Metall.
0001-6160,
31
(
5
), pp.
677
689
.
22.
Faulner
,
R. J.
, 1985, “
Impurity Diffusion Constants and Vacancy-Impurity Binding Energies in Solids
,”
Mater. Sci. Technol.
0267-0836,
1
, pp.
442
448
.
23.
ASTM A370
, 1990, Standard Test Method and Definition for Mechanical Testing of Steel Products.
24.
GB229-94
, 1994, Metallic Materials—Charpy V-Notch Impact Testing (in Chinese).
25.
Davis
,
L. E.
,
MacDonnald
,
N. C.
, and
Palmberg
,
P. W.
, 1985,
Handbook of Auger Electron Spectroscopy
,
Physical Electronics Division, Perkin—Elmer Co.
,
Minnesota
.
26.
Tan
,
J.
, and
Huang
,
W.
, 1998, “
Application of Step-Cooling Test Method for Temper Embrittlement of 2.25Cr-1Mo Steel
,”
J. Nanjing Univ. Chem. Tech., 20 (Supp.)
, pp.
17
20
(in Chinese).
27.
Tan
,
J.
, and
Huang
,
W.
, 2002, “
A Study on Methodology of the Modified Step-Cooling Testing
,”
J. Nanjing Univ. Sci. Technol.
1005-9830,
24
(
1
), pp.
65
68
(in Chinese).
28.
Tan
,
J.
, and
Huang
,
W.
, 2002, “
The Test Study on the Modified Temperature Curve for Step Cooling
,”
Petro-Chem. Equip.
,
31
(
3
), pp.
1
3
(in Chinese).
29.
CISRI
, 1993, “
The Temper Embrittlement and Hydrogen Embrittlement Using Test Block of 2.25Cr-1Mo Steel Removed from A In-Service Hydrogenation Reactor
,”
Central Iron and Steel Research Institute
, Beijing (in Chinese).
30.
Nanjing University of Technology, 2004, “
A study on the Prediction of the Remaining Life of Hot-Wall Hydrogenation Reactors
,”
College of Mechanical and Power Engineering, Nanjing University of Technology
, Nanjing (in Chinese).
You do not currently have access to this content.