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The classic Kachanov–Rabotnov (KR) creep damage model is a popular model for the
design against failure due to creep deformation. However, the KR model is a local
approach that can exhibit numerically unstable damage with mesh refinement. These prob-
lems have led to modified critical damage parameters and alternative constitutive models.
In this study, an alternative sine hyperbolic (Sinh) creep damage model is shown to (i) pre-
dict unity damage irrespective of stress and temperature conditions such that life prediction
and creep cracking are easy to perform; (ii) develop a continuous and well-distributed
damage field in the presence of stress concentrations; and (iii) is less stress-sensitive, is
less mesh-dependent, and exhibits better convergence than the KR model. The limitations
of the KR model are discussed in detail. The KR and Sinh models are calibrated to three
isotherms of 304 stainless steel creep test data. Mathematical exercises, smooth specimen
simulations, and crack growth simulations are performed to produce a quantitative com-
parison of the numerical performance of the models. [DOI: 10.1115/1.4036142]
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1 Introduction

The long-term exposure of industrial gas turbine (IGT) compo-
nents such as steam pipe sections, pressure vessels, boilers heat
exchangers, and disks at elevated temperature and pressure makes
creep damage critically important to consider [1,2]. The growing
demand to obtain higher thermal efficiency and reduced CO2 emis-
sions have led to higher operating temperatures and pressures.
There is an increasing need to develop accurate creep deformation,
damage evolution, crack initiation, crack propagation, and rupture
life prediction models [1].

The effective stress concept of continuum damage mechanics
(CDM) can be employed to describe the damage process in mate-
rials from crack initiation to rupture [3]. In the CDM approach, a
continuous damage variable, x, is coupled with the viscous func-
tion of a constitutive model to incorporate the effects of microstruc-
tural damage into the constitutive response. The damage variable is
assumed to evolve from zero (no damage) to unity (rupture).
Kachanov originated the phenomenological CDM approach that
was later extended by Rabotnov [4,5].

One of the potentially useful applications of the classical KR
model is in crack growth analysis. Finite element analysis (FEA)
using KR exhibits mesh shape, distribution, and size dependency
such that upon mesh refinement local CDM does not converge to
a single solution [6–11]. For KR, damage tends to localize around
the crack tip [7,10,12]. Needleman and Tvergaard observed
increased crack growth rates upon mesh refinement and proposed
a microstructural model that specifies inclusion size, spacing, and
initial crack tip radii to mitigate mesh sensitivity [11]. Penny
introduced a modified equivalent stress to define critical damage
as a function of the yield and ultimate tensile strengths (UTS) and
thus match the high-stress region of the stress–rupture curve [13].
Liu and Murakami proposed a new model to mitigate damage local-
ization using a micromechanics approach and a mathematically

valid damage evolution equation using the calculus of variations
[7], based on the work of Hutchinson [8] and Riedel [9]. The
Liu–Murakami model preserves the original KR rupture prediction
equation. Rouse et al. illustrated that the rupture prediction of the
Liu–Murakami model is linear (on a log–log scale) and suggested
that the Dyson Sinh model is superior [1]. An alternative Sinh
model similar to the Dyson model has been validated for a wide
range of operating stress [14].

While the local CDM approach represents an “old school”
approach to the issues of creep crack growth and rupture, and non-
local CDM approaches have been introduced to mitigate damage
localization and mesh dependence [15,16], local CDM continues
to be applied in the design against creep of structural components
in the power generation industry [17–19]. In some organizations,
local CDM has only recently been implemented to replace analyti-
cal master curve models, such as Larson–Miller, Monkman–Grant,
etc. [20,21]. The MPC omega method, Theta projection, and local
CDM are the in-practice constitutive models for simulating long-
term (>100,000) creep deformation in complex fossil energy struc-
tural components [22]. The international codes, such as ASME
B&PV III, French RCC-MR, and British R5, recommend a phe-
nomenological approach to creep and creep-fatigue where damage/
life fraction rules, regression analysis, and confidence bands are
used to manage reliability and preserve conservatism [22–25]. The
advantages and disadvantages of the in-practice models should be
investigated and improved models suggested for the practice.

The trigonometric function, Sinh, is commonly employed in
constitutive and life prediction models. Yu et al. used the Sinh
function to define a stress index to accommodate multiaxial stress
[2]. Damage is the void fraction, fh, and the proposed void growth
rate contains a ð1� fhÞ term in the denominator that may lead to
infinite void growth rate as the void fraction, fh, approaches unity.
Rouse et al. further observed that having a ð1� fhÞ term in the
denominator may increase the computing time in FEA and sug-
gested that the Dyson model containing a Sinh function may miti-
gate this problem [1]. The Dyson model includes a state variable /
from ð0</ < 1Þ representing aging and another state variable x2

representing cavitation damage. It is reported that / is as low as 0.1
and x2 ¼ 1=3 for uniaxial cases. These critical damage values are
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not unity, are a function of stress and temperature, and are subject
to scatter such that it can be difficult to produce an accurate predic-
tion of rupture [1,26]. Haque and Stewart introduced an alternative
Sinh constitutive model for Waspaloy under triaxial creep condi-
tions [27]. Analytical solutions have been developed to determine
the material constants [28]. A comparative and functional relation-
ship study of the MPC Omega, Theta projection, and alternative
Sinh model shows that Sinh offers more flexibility and better dam-
age prediction [29,30].

In the current study, the creep deformation, damage, and crack
growth of the KR and Sinh models are compared. A detailed expla-
nation and analytical derivation of each model are performed fol-
lowed by calibration to three isotherms of 304 stainless steel creep
data. Using the calculus of variations, the damage variation as a
function of stress variation is mathematically exercised. The criti-
cal damage calculated at each test condition is compared. Creep
crack growth simulations of a thin finite-width plate under uni-
form tension with a center hole with radial cracks are performed
at three mesh sizes. Contour plots of the damage field, bar graphs
of the damage distribution on the X- and Y-axis, crack growth rate
versus crack length, and time-step versus central processing unit
(CPU) time versus simulated time plots are employed to compare
the models.

2 Material

The alloy 304 stainless steel (304SS) is an Fe–Cr–Ni alloy that
has a high temperature, oxidation, and corrosion resistance. Experi-
mental data are obtained from a study on the statistical creep prop-
erties of 304SS at elevated temperature [31]. Creep tests were
repeated five times and performed according to ASTM E139 at
160, 180, 240, 260, 300, and 320 MPa stress from 600 �C to 700 �C.

3 Constitutive Models

3.1 Kachanov–Rabotnov (KR) Model. The coupled KR creep
damage constitutive model consists of a creep strain rate, _ecr, (Eq.
(1)) and a damage evolution equation (2) as follows [4,5]:

_ecr ¼
decr

dt
¼ A � r

1� x

� �n

(1)

_x ¼ dx
dt
¼ M � rv

1� xð Þ/
; ð0 � x � xrÞ; xr � 1 (2)

where A and n are the Norton power law constants, r is equivalent
stress, x is damage, xr is critical damage, and M, v, and / are the
tertiary creep damage constants. The constant v must be greater
than or equal to unity but is typically fixed to three. Analytical
methods for determining the constants exist [28]. Rearranging the
creep strain rate (Eq. (1)) gives an analytical damage as follows:

x _ecrð Þ ¼
_ecr tð Þ

A

h i1=n

� r

_ecr tð Þ
A

h i1=n
(3)

When the creep strain rate is equal to the minimum creep strain,
_ecr ¼ _emin ¼ A � rn, the term ð_ecr=AÞ1=n

of the analytical damage
(Eq. (3)) becomes equal to the equivalent stress, r, such that dam-
age (Eq. (3)) becomes zero. As soon as the creep strain rate is
greater than the minimum creep strain rate, _ecr > _emin, the term
ð_ecr=AÞ1=n

becomes larger than the equivalent stress, r, and irre-
versible damage begins.

An equation for KR damage can be obtained if stress is assumed
constant. Integrating the damage rate (Eq. (2)) and assuming initial
time, t0, and initial damage, x0, are equal to zero gives [27]

x tð Þ ¼ 1� 1� /þ 1ð ÞMrvt½ �
1

/þ1ð Þ

tr ¼ ½ð/þ 1ÞMrx��1
(4)

When time is equal to rupture time, ðt ¼ trÞ, and damage is equal
to critical damage, ðx ¼xrÞ, rearranging Eq. (4) gives

M ¼ ½1� ð1� xrÞð/þ1Þ�=½ð/þ 1Þrvtr� (5)

Introducing Eq. (5) into Eq. (4) gives the following:

x tð Þ ¼ 1� t

tr
� 1� xrð Þ/þ1 � 1

h i
þ 1

� � 1
/þ1

(6)

If it is assumed at rupture that xr ¼ 1, Eq. (5) reduces to

x tð Þ ¼ 1� 1� t

tr

� � 1
/þ1

; / > 1ð Þ (7)

In this form, the KR damage only depends on the / material
constant.

Taking the variation of damage, @xðtÞ, with an infinitesimal
variation of stress, @rðtÞ, using Eq. (4) and replacing the portion,
M � rðtÞv � t, by rearranging Eq. (4) gives

@x tð Þ ¼ v � 1� 1� xð Þ/þ1

1� xð Þ/
� @r tð Þ

r tð Þ (8)

When damage approaches unity, ðxr ! 1Þ, a small variation of
stress, @rðtÞ, will create a near infinite damage variation, @xðtÞ,
when / is greater than zero. This will be graphically determined
in Sec. 3.3.

3.2 Sine Hyperbolic (Sinh) Model. The coupled Sinh creep
damage constitutive model consists of a creep strain rate (Eq. (9))
and damage evolution equation (10) as follows [27]:

_ecr ¼ Asinhðr=rsÞexp ðkx3=2Þ (9)

_x ¼ M 1� exp �/ð Þ½ �
/

sinh
r
rt

� �v

exp /xð Þ (10)

where A and rs are the creep coefficient and secondary creep
mechanism-transition stress, respectively, determined by calibrat-
ing the McVetty minimum creep rate law, _emin ¼ Asinhðr=rsÞ, to
minimum creep strain rate data [14,28]. The constant k is unit-less
and is defined as

k ¼ lnð_efinal=_eminÞ (11)

where _efinal is the final creep strain rate and _emin is the minimum
creep strain rate calculated directly from creep data. The variable
x represents damage evolution from zero to unity. In the damage
rate (Eq. (10)), the material constants M, /, v, and rt must be
greater than zero.

Analytical damage is obtained by rearranging the creep strain
rate (Eq. (9)) as follows:

x _eð Þ ¼ 1

k
ln

_ecr tð Þ
Asinh r=rsð Þ

� �� �2=3

(12)

The Sinh damage is always unity at rupture. Damage begins to accu-
mulate when _ecr > _emin. During steady-state creep, the strain rate,
_ecr, in the numerator of the analytical damage (Eq. (12)) becomes
equal to the minimum creep strain rate, _emin, in the denominator and
analytical damage (Eq. (12)) becomes xð_eÞ ¼ fln½1�=kg2=3 ¼ 0.
When the final creep strain rate is reached, _ecr ¼ _efinal, analytical
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damage (Eq. (12)) reduces to xð_efinalÞ ¼ ðk=kÞ2=3 ¼ 1. Thus, for
any experimental dataset, the critical damage of Sinh is always unity.

An equation for Sinh damage can be obtained if stress is assumed
constant. Integrating the damage rate (Eq. (10)) with the assump-
tion of initial time, t0, and initial damage, x0, equal to zero and
solving for damage, x, gives

x tð Þ ¼ � 1

/
ln 1� 1� exp �/ð Þ½ � t

tr

� �

tr ¼ Msinh
r
rt

� �v
" #�1 (13)

In this form, the Sinh damage only depends on the / material
constant.

Taking the variation of damage, @xðtÞ, with an infinitesimal
variation of stress, @rðtÞ, and replacing the portion Msinhðr=rtÞv
by rearranging Eq. (13) gives

@x tð Þ ¼ exp /xð Þ � 1½ �
/

@r tð Þ
rt

(14)

When damage is critical, ðxr ! 1Þ, the variation of damage,
@xðtÞ, does not become infinite and remains finite throughout the
damage evolution.

3.3 Comparison of Damage Equations Using the Calculus
of Variations. The form of the damage equation and its time
derivative are important for the performance of finite element
(FE) simulations. This can be realized by considering a fracture
simulation where the crack tip is in front of an element as shown
in Fig. 1. Around the crack tip, a creep damage zone exists where

the damage is distributed from zero to unity ð0 � x � 1Þ. The
crack propagates when damage becomes unity. The sharp edge at
the crack tip creates a stress concentration. A stress gradient or
“variation” exists across the element at the crack tip. A stress vari-
ation of @r across an element will cause a damage variation of
@xð@rÞ as depicted in Fig. 1. The damage variation, @xð@rÞ, for
each time step, @t is determined using the time derivative of the
damage equation and added to the previous damage. Stress con-
centration at the crack tip initiates creep deformation and damage
accumulation assessed by the model equation. When damage
approaches unity, the KR model (Eq. (8)) develops an infinite
damage variation for an infinitesimal change of stress that can
lead to localized and time-step sensitive damage growth. The Sinh
model (Eq. (14)) does not have a damage term in the denominator,
and stress variation does not lead to infinite damage variation.

An analytical exercise of the damage variation equation of KR
and Sinh as a function of damage (on a log-normal scale) is
depicted in Fig. 2. Using the KR model, an infinitesimal stress vari-
ation (for example, dr ¼ 10� 10�6, 10� 10�4, or 10� 10�3 MPa)
will produce a damage variation approaching infinity as damage
approaches unity as shown in Fig. 2(a). The horizontal line in
Fig. 2(a) indicates where damage variation is equal to unity. The
KR model reports a damage variation that is the order of magnitude
greater than unity at damage less than unity. Given an infinitesimal
stress variation and/or element size, the KR model will always
localize. The formed damage variation of KR will cause numerical
instabilities. Other investigators have also identified this problem.
Liu and Murakami found damage localization using the KR model
in near homogeneous stress fields with a very small (10� 10�8)
stress gradient [7]. Peerling et al. found that as the mesh is refined,
the fracture resistance is exceeded and crack growth becomes infi-
nite [15]. Using the Sinh model, an infinitesimal stress variation
(for example, dr ¼ 10� 10�6, 10� 10�4, or 10� 10�3 MPa) will
produce a damage variation that exhibits a power law trend and
does not explode to infinity as shown in Fig. 2(b). When damage is
unity, for an infinitesimal stress variation, dr produces a small dam-
age variation, dx. Given an appropriate element size, the Sinh
model will always remain numerically stable. It is evident from the
typical fracture simulation illustrated in Fig. 1 and the supported
evidence depicted in Fig. 2 that when damage is unity, the KR
model becomes numerically unstable, whereas the Sinh model
remains stable.

Traditionally, critical damage is set to unity; however, recent
investigations and suggestions by literature have demonstrated that
critical damage can be assumed to be less than unity and exhibits a
dependence on stress and temperature, xr ¼ f ðr;TÞ, similar to the
rupture data, tr ¼ f ðr; TÞ [7,32]. The obviousness of this relation-
ship extends from Eq. (4). The uncertainty in stress-rupture data

Fig. 1 Damage variation in front of the crack tip due to stress
variation across an element

Fig. 2 Damage variation, ›xðtÞ, versus damage, x, at a fixed stress variation, ›rðtÞ, for the (a) KR model (Eq. (8)) and (c)
Sinh model (Eq. (14))
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would suggest that obtaining accurate critical damage values is a
major obstacle. Some reported practices to determine the nonunity
critical damage are to

(1) use pure numerical optimization to determine an optimal,
single critical damage value for a given dataset. This
approach has the downside of providing no physical justifi-
cation for the value obtained as well as restricting modeling
to interpolation only [14].

(2) find a functional relationship between critical damage and
monotonic tensile properties. In some cases, critical dam-
age is fixed to a constant irrespective to stress and tempera-
ture (typically between 0.3 and 0.6) equivalent to the
average creep ductility [33]. Unfortunately, creep ductility
exhibits the same uncertainty as stress-rupture data. In other
cases, critical damage is a function of temperature only.
Penny defined critical damage as a function of the yield
strength, ryðTÞ, ultimate tensile strength, rUTSðTÞ, and a
scaling factor 0 � aðTÞ � 1 through the assumption of a
critical net stress above which rupture occurs [13]. Unfortu-
nately, all the constants exhibit temperature dependence
necessitating a large experimental dataset and careful selec-
tion of the regression analysis functions to avoid inflections
and physically unrealistic predictions. In the final case, criti-
cal damage is a function of stress and temperature and often
takes the form of xr ¼ f ðr;TÞ � tr or xr ¼ f ðr; TÞ � er . The
downfall of this approach is the additional complexity added
to the modeling approach.

It would be advantageous to maintain critical damage as unity
irrespective to stress and temperature.

As damage occurs within a material, it induces a measurable
change in most physical quantities. In the case of mechanical quan-
tities such as the Young’s modulus and Poisson’s ratio, it is impor-
tant to model this degradation such that the mechanical stresses are
accurately predicted. When applying the CDM approach to iso-
tropic materials, the Young’s modulus is degraded as follows:

E ¼ E0 � ð1� xÞ (15)

Ecr ¼ E0 � ð1� xcrÞ (16)

where E0, E, and Ecr are the initial, current, and critical Young’s
modulus, respectively. When critical damage is less than unity,
the critical stiffness can remain large. This creates a numerical
problem where the stiffness behind the crack tip needs to be
relieved. Some methods to relieve the stiffness are as follows

(1) allow stiffness to remain behind the crack tip which leads
to inaccurate simulations [34],

(2) step change the stiffness from the critical value Ecr to a
very small number which leads to numerical instability
where periods of intense time-step bisection are encoun-
tered when critical damage is reached in each element [35],

(3) apply the element deletion approach which violates the
conservation of mass [36], or

(4) apply the cohesive zone approach where the crack surface
is separated using weak springs [37]; however, the crack
path must be proscribed a priori.

These stiffness reduction methods can be avoided by introduc-
ing constitutive models where critical damage is always unity.
When critical damage is unity, the stiffness behind the crack tip
becomes a moot point.

4 Numerical Methodology

The KR (Eqs. (1) and (2)) and Sinh (Eqs. (9) and (10)) models
are implemented as implicit creep equations with von Mises
potential using a simplified Hill’s tensor. For both models, the
equivalent stress in the damage evolution equation is replaced by

the first principal stress, r1. The constitutive equations are imple-
mented into ANSYS FEA software. The user material routine
(USERMAT), an ANSYS user-programmable feature (UPF), is used
to define the constitutive behavior. For every Newton–Rapson
iteration and every material integration point, the USERMAT UPF
is called. At the beginning of a time increment, the current stresses,
strains, and state variables are inputs. The USERMAT must then
provide updated stresses, inelastic strains, state variables, and the
material Jacobian matrix as outputs [38]. The stress increment is
determined using the radial return technique that consider creep as
an incompressible process where volumetric stress has no effect on
the creep strain and the stress has no effect on volumetric creep
strain [39]. The critical damage is restricted to 0.99 instead of unity
to prevent a divide by zero error when using the KR model (Eqs.
(1) and (2)).

In this study, elastic-creep small strain analysis is performed and
the material is assumed to be isotropic. The total stiffness matrix,
CTOT, also known as “material Jacobian matrix” is decomposed
into elastic and creep stiffness matrices, CEL and CCR, respectively,
as follows:

CTOT ¼ CEL þ CCR

_r ¼ CTOT _etot

_r ¼ CEL _ee þ CCR _ecr

(17)

The stiffness matrices CEL and CCR correspond to the compliance
tensors SEL and SCR as

½CEL� ¼ ½SEL��1 ½CCR� ¼ ½SCR��1 (18)

The creep compliance matrix, SCR, is defined as follows:

Scr½ � ¼ CCR½ ��1 ¼ dDecr;i rð Þ
drj

(19)

The exact solution to this derivative is available from the authors
[28].

The scalar creep strain increment is converted into multiaxial
form (corresponding to the Levy–Mises or Prandtl–Reuss flow
rule) as follows:

Decr;i ¼ _eDt
Ms

rHill

(20)

where M and s are the simplified Hill compliance tensor and
Cauchy stress vector, respectively. Damage accumulates as
follows:

x ¼ xþ _xDt (21)

At each time step, damage accumulates and the elastic modulus
degrades using Eq. (15).

5 Results and Discussion

5.1 Smooth Specimen Simulation. A smooth creep speci-
men is simulated by simplifying the geometry to a single three-
dimensional eight-node element. A uniform load is applied on the
top surface of the element. Appropriate displacement constraints
were applied to replicate the uniaxial stress observed in a smooth
creep specimen. The simulation is run up to the experimental rup-
ture time to facilitate comparison with experimental data. The
material constants of 304SS for the KR and Sinh model are listed
in Tables 1 and 2, respectively.

Histories of creep deformation, ecrðtÞ, and damage evolution,
xðtÞ, are compared to creep data collected at 700 �C, 650 �C, and
600 �C in Fig. 3. Both the KR and Sinh model are able to predict
creep deformation within the boundaries of the repeated creep
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Table 1 KR material constants for 304SS at 160–320 MPa and 600–700 �C

Temperature, T (�C) Stress, r (MPa) A (MPa�n h�1) n M (MPa�v h�1) / v

700 160 6.53� 10�31 12.78 1.02� 10�10 12 3
180 6.53� 10�31 12.78 1.02� 10�10 18 3

650 240 4.26� 10�33 12.98 1.28� 10�10 12 3
260 4.26� 10�33 12.98 1.28� 10�10 25 3

600 300 1.56� 10�35 13.36 1.09� 10�11 27 3
320 1.56� 10�35 13.36 1.09� 10�11 24 3

Table 2 Sinh material constants for 304SS at 160–320 MPa and 600–700 �C

Temperature, T (�C) Stress, r (MPa) A (%h�1) rs (MPa) k M (h�1) / v rt (MPa)

700 160 1.2809� 10�4 29.00 4.52 3.2� 10�2 5.4 3 289.44
180 1.28� 10�4 29.00 4.24 3.2� 10�2 3.8 3 289.44

650 240 1.01� 10�7 18.00 3.02 1.08� 10�2 4.1 3 264.04
260 1.01� 10�7 18.00 2.40 1.08� 10�2 1.8 3 264.04

600 300 1.45� 10�6 24.80 3.72 2.6� 10�2 5.99 3 257.08
320 1.45� 10�6 24.80 1.93 2.6� 10�2 2.62 3 257.08

Fig. 3 Creep deformation and analytical damage evolution of the KR and Sinh models at (a) and (b) 700 �C, (c) and (d)
650 �C, and (e) and (f) 600 �C for 304SS
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tests. When compared to the Sinh model, the KR model underpre-
dicts the secondary creep regime and overpredicts the tertiary
regime (depicted in the figures as bold drop lines). This under/
over prediction is due to the KR equations. The KR creep strain
rate (Eq. (1)) term ðr=ð1� xÞÞn increase rapidly at the onset of
tertiary creep ðx! 1; n > 1;r > 1Þ. When the KR model con-
stants are optimized to fit the tertiary creep regime, the secondary
creep regime is under predicted.

Both the KR and Sinh models fit the experimentally derived
analytical damage (using Eqs. (3) and (12)) within the boundaries
of the repeated creep tests. The KR model damage evolves from 0
to 0.4 and then undergoes a dramatic increase in damage rate
to unity (solid black line in Figs. 3(b), 3(d), and 3(f)). The Sinh
model damage exhibits a continuously increasing damage rate.
Thus, the Sinh damage model (short dash black line in Figs. 3(b),
3(d), and 3(f)) follows a more realistic damage path.

5.2 Two-Dimensional Fracture Simulations of Thin Plate.
Fracture simulations of a thin finite-width plate under uniform ten-
sion with a center hole with radial cracks are conducted. The
dimensioned geometry of the plate is provided in Fig. 4(a). A uni-
form load of 33 MPa is applied to the edge of the plate at 700 �C.
The Young’s modulus at 700 �C is E0 ¼ 190 GPa. A quarter sec-
tion of the specimen is simulated with displacement constraints
shown in Fig. 4(b). Three mesh sizes (0.125 mm, 0.05 mm, and
0.01 mm) are simulated. The mesh size, De, is defined as the fixed
element edge length sets along the crack path. Two-dimensional
eight-noded PLANE183 elements with the plane stress option are
performed. These simulations are conducted with the first princi-
pal stress acting as the driving force behind damage evolution and
subsequent crack propagation. The mesh statistics including the
number of elements and nodes and the stress concentration factor
are provided in Table 3.

5.2.1 Damage Distribution and Mesh Sensitivity. Contour
plots of the damage distribution along the crack (2 mm from the
center of the hole) of the 0.01 mm meshed KR and Sinh simula-
tions are provided in Fig. 5. The KR and Sinh contours are taken

at identical crack lengths. The Sinh model exhibits a continuous
damage distribution where an equation can be written that describes
the contours of damage. The KR model has a discontinuous damage
field where inflections appear in the damage contours (as illustrated
by the white arrows). As the mesh is refined, the inflection points
intensify. From a mathematical perspective, the KR damage field is
discontinuous.

An observation concerning the mesh sensitivity of the models
is obtained when the length of damage distribution (with x rang-
ing from 0.11 to 0.99) along the X- and Y-axis is profiled with
respect to mesh size as depicted in Figs. 6(a) and 6(b), respec-
tively. Overall the Sinh damage distribution is larger (indicated by
the bar height) and reduces at a higher rate as the mesh is refined
(indicated by the solid line), while the KR damage distribution is
smaller (indicated by the bar height) and reduces at a lower rate
(indicated by the dotted line). Both models appear to localize upon
mesh refinement; however, Sinh reaches an asymptote (marked in
Fig. 6) beyond which mesh-size dependence vanishes. When the
damaged area is calculated (the area where x ranges from 0.11 to
0.99), the damaged area of KR is always smaller than Sinh. For
meshes 0.125, 0.05, and 0.01 mm, the KR damage area is 75%,
60%, and 62.5% smaller than Sinh. These findings demonstrate that
the Sinh model is less localized than KR.

An observation concerning the numerical instability of the
models is obtained when the damage with 0.05 mm mesh are com-
pared for the KR and Sinh in Fig. 7. In the model, the mesh size
increases from 0.05 mm in the P region to 0.125 mm in the Q
region. The mesh is shown in Fig. 4(b). The simulations are run to
rupture where numerical instability due to the loss of stiffness pre-
vented further convergence. The KR model became numerically
unstable earlier than Sinh as indicated by a shorter crack length.
The KR model exhibits a sudden change in damage distribution at
the transition point from P to Q as circled in Fig. 7(a). Once, in
the Q region, the damage field becomes tortuous and unstable.
The Sinh model exhibits a smooth damage field with no sudden
change in the damage distribution upon mesh size increase as
shown in Fig. 7(b).

5.2.2 Crack Growth Rate. The crack growth rate using the
KR model is provided in Fig. 8(a). For KR, as the mesh size
decreases, the amplitude and frequency of oscillations in the crack
growth rate increase. When examining the crack growth rate at
initiation, the initial crack growth rate is inconsistent between the
three meshes having no discernable trend. In addition, the initial
crack growth rate is not the lowest observed with a drop observed
between 0 and 1 mm of crack length. The cause is found analyzing
the KR equations. When x! 1, the KR creep strain and damage
rate (Eqs. (1) and (2)) and damage variation (Eq. (8)) become

Fig. 4 Two-dimensional center-hole plate: (a) dimensions and (b) ANSYS mesh (De 5 0.05 mm)

Table 3 Mesh statistics of the center-hole plate

Mesh size,
De (mm)

Number of
elements

Number of
nodes

SCF,
r=r0 (MPa/MPa)

0.125 3637 11,172 5.45
0.05 4882 15,013 8.78
0.01 19,629 59,882 15.24
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infinite. The high stress and damage variation at the crack tip con-
tribute to KR producing numerically unstable crack growth. As
the mesh is refined, the stress concentration increases. This con-
tributes to the inconsistencies and increasing oscillations upon
mesh refinement.

The crack growth rate using the Sinh model is provided in
Fig. 8(b). For Sinh, as the mesh size decreases, the amplitude and
frequency of oscillations in the crack growth rate decrease. When
examining the crack growth rate at initiation, the initial crack
growth rate decreases upon mesh refinement maintaining a dis-
cernable trend. If a polynomial was fit to each mesh size, the devi-
ations between the three polynomials will be minimum. As such,

a single polynomial could be used to describe the crack growth
rate irrespective of mesh size. The accuracy of the crack growth
rate using Sinh is not mesh-sensitive for the given mesh sizes.
When looking closely at the decreasing oscillations with mesh
size, only the precision of the crack growth rate is mesh-sensitive.

In summary, the Sinh crack growth rate is smoother and more
consistent than KR. The Sinh model produces self-accurate pre-
dictions of the crack growth rate that become more precise with
mesh refinement. The maximum representative volume element
(RVE) size of Sinh is larger than the RVE of KR. The increasing
oscillations in the crack growth rate of KR upon mesh refinement
make it difficult to determine an appropriate RVE for KR. The KR

Fig. 5 Damage at the crack tip for 0.01 mm: (a) mesh, (b) KR model (t 5 1100 h), and (c) Sinh
model (t 5 1073 h)
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crack growth rate becomes numerically unstable while the Sinh
model improves in stability and precision upon mesh refinement.

5.2.3 Time-Stepping and Mesh Sensitivity. A good metric to
analyze mesh sensitivity and convergence is the evolution of
time-step size and CPU time with respect to simulated time at

various mesh sizes as illustrated in Fig. 9. The time-step is the
increment of simulated time taken during each iteration in a simula-
tion. The initial time-step was set to 1� 10�6 h. The time-step size
increases until the maximum time-step size of 5 h is achieved.
ANSYS bisects the time-step when numerical instabilities prevent
convergence. The CPU time indicates the real computer time

Fig. 6 Length of damage distribution with x ranging from 0.11 to 0.99 on the (a) X-axis and (b) Y-axis relatively to the crack
tip

Fig. 7 Damage contour near fracture of center-hole plate with 0.05 mesh: (a) KR and (b) Sinh model

Fig. 8 Mesh-size effect on crack growth rate: (a) KR and (b) Sinh models
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required to complete a simulation. If bisection occurs, more itera-
tions are required to reach simulated rupture life and the CPU time
will increase.

The Sinh model exhibits less time-step bisection and CPU time
does not increase dramatically upon mesh refinement when com-
pared to KR as presented in Fig. 9. For both models, time-step bisec-
tion is required to accommodate the high-stress near-instantaneous
rupture at the end of life. The KR model bisects earlier than the Sinh
model with bisections occurring at 62% and 13% of simulated
rupture life in 0.05 and 0.01 mm meshes, respectively. The Sinh
model experiences bisection at 89% and 65% of simulated rupture
life in 0.05 and 0.01 mm meshes, respectively. The early bisection
of the KR model contributes to a larger CPU time as the mesh is
refined. For a 0.05 mm mesh, the CPU time required for the KR
and the Sinh model is almost identical up to 5000 h of simulation
time before deflection as shown in Fig. 9(a). Upon mesh refine-
ment to 0.01 mm, the KR model becomes unstable earlier such
that the CPU time required for the KR and the Sinh model is only
identical up to 1000 h of simulation time as shown in Fig. 9(b).
This is indicative of multiple bisections occurring at each iteration
until an appropriate time-step is obtained for continued conver-
gence. The failed-bisected-iteration attempts to increase the overall
CPU time. ANSYS always attempts to return to the maximum time-
step size after bisection. This can contribute to additional failed iter-
ation attempts as the time-step size continuously oscillates from the
maximum to the optimal. Overall, it is determined that the Sinh
model requires less bisection and thus less CPU time.

Further observations concerning mesh sensitivity can be eluci-
dated by examining the simulated rupture time as depicted in
Fig. 10(a). Upon refinement from 0.05 to 0.01 mm, the KR rupture

time increased by 20% (1079 h) while Sinh only increased by
0.6% (32 h). The root cause of this phenomenon involves the
damage variation as a function of stress variation when damage
approaches unity illustrated in Fig. 2(a) and depicted in Fig. 2(b).

The convergence of KR and Sinh can be examined by looking
at the total CPU time required to reach rupture depicted in
Fig. 10(b). Upon mesh refinement from 0.05 to 0.01 mm, the
required CPU time increased by a factor of 10.86 and 5.50 for KR
and Sinh, respectively. Logically, as mesh size decreases, the
computational costs increase, resulting in more CPU time; how-
ever, bisections and failed-bisection attempts can dramatically
increase CPU time. It is determined that the Sinh model exhibits
better convergence than the KR model.

6 Conclusion

It is concluded that the Sinh model offers better creep damage
and crack growth analysis. When the Sinh model is compared to
the KR model, it is observed that

(1) The Sinh model is normalized by the experimental final
creep strain rate (Eq. (12)) such that critical damage is unity
irrespective of stress and temperature conditions while the
KR critical damage (Eq. (3)) cannot be unity as the experi-
mental final creep strain rate is not infinite

(2) The Sinh model exhibits a more distributed damage field
when compared to KR model. The Sinh crack growth rate
becomes smoother upon mesh refinement, while the KR crack
growth rate becomes numerically unstable. Mathematically, it
is proven that when damage approaches unity ðx! 1Þ, for

Fig. 9 Timestep and CPU time versus simulated time: (a) 0.05 mm and (b) 0.01 mm meshes

Fig. 10 Mesh sensitivity and convergence using (a) simulated rupture time and (b) CPU time
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a small variation in stress, the Sinh damage variation
remains finite (Eq. (14)), while KR develops a near infinite
damage variation (Eq. (8)) leading to numerical instability.

(3) The Sinh model is less stress-sensitive, less mesh-dependent,
and exhibits better convergence when compared to the KR
model. The discontinuous damage of the KR model creates
time stepping issues leading to longer CPU time upon mesh
refinement. The KR model simulations have difficulty reach-
ing convergence as the crack grows and the stress concentra-
tion intensifies.

In future work, an analytical solution will be derived to trans-
form the KR material constants into Sinh constants.
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Nomenclature

A; n ¼ Norton power law constants (%MPa�n h�1,
dimensionless)

A;rs ¼ Mcvetty creep law constants (%1/h, MPa)
Ci ¼ stiffness tensor, i ¼ type
E ¼ Young’s modulus (MPa)

M ¼ Hill compliance tensor
M;rt; v;/;k ¼ Sinh model constants (h�1, MPa, dimensionless)

M; v;/ ¼ Kachanov–Rabotnov model constants (MPa�v h�1,
dimensionless)

s ¼ Cauchy stress vector
Si ¼ compliance tensor, i ¼ type
tr ¼ rupture life (h)
a ¼ scaling factor

_ecr ¼ creep strain rate (%1/h)
x ¼ analytical damage (dimensionless)
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