Abstract

The cutout and temperature loading influences on the nonlinear frequencies of the laminated shell structures are predicted numerically using two different types of geometrical nonlinear strain-displacement relationships to count the large deformation. The displacement of any generic point on the structural panel is derived using the third-order shear deformation theory (TSDT). Moreover, the direct iterative method has been adopted to obtain the nonlinear eigenvalues in conjunction with the isoparametric finite element (FE) steps. The present analysis includes the effect of temperature and the temperature-dependent composite elastic properties on the thermoelastic frequencies. This study intends to establish the Green-Lagrange type of nonlinear strain's efficacy in computing the nonlinear frequency of layered structure with and without cutout instead of von-Karman strain kinematics. The numerical model's validity has been established by comparing the results to previously published results. In addition, experimentally obtained fundamental frequency values of a few modes are compared to numerical proposed numerical results under the thermal loading. Finally, the effects of cutout (shape and size) and the associated structural geometrical parameters on the nonlinear thermal frequency responses of the laminated structure are expressed in the final output form.

References

1.
Oliveira
,
L.
,
Nunes
,
J. P.
,
Silva
,
J. F.
,
Barros
,
B.
,
Amorim
,
L.
, and
Vasconcelos
,
M.
,
2013
, “
Composite Pressure Vessels for Commercial Applications
,”
The 19th International Conferences on Composite Materials
, Palais des congrès, Montréal, QC, Canada, July 28–Aug. 2, pp.
3145
3154
.https://repositorium.sdum.uminho.pt/bitstream/1822/26574/1/ICCM19-eproceedings%201%20of%202_Thermocompress.pdf
2.
Liu
,
P. F.
,
Chu
,
J. K.
,
Hou
,
S. J.
,
Xu
,
P.
, and
Zheng
,
J. Y.
,
2012
, “
Numerical Simulation and Optimal Design for Composite High-Pressure Hydrogen Storage Vessel: A Review
,”
Renewable Sustainable Energy Rev.
,
16
(
4
), pp.
1817
1827
.10.1016/j.rser.2012.01.006
3.
Nebe
,
M.
,
Soriano
,
A.
,
Braun
,
C.
,
Middendorf
,
P.
, and
Walther
,
F.
,
2021
, “
Analysis on the Mechanical Response of Composite Pressure Vessels During Internal Pressure Loading: FE Modeling and Experimental Correlation
,”
Compos. Part B Eng.
,
212
, p.
108550
.10.1016/j.compositesb.2020.108550
4.
Parnas
,
L.
, and
Katırcı
,
N.
,
2002
, “
Design of Fiber-Reinforced Composite Pressure Vessels Under Various Loading Conditions
,”
Compos. Struct.
,
58
(
1
), pp.
83
95
.10.1016/S0263-8223(02)00037-5
5.
Amabili
,
M.
,
2012
, “
Nonlinear Vibrations of Angle-Ply Laminated Circular Cylindrical Shells: Skewed Modes
,”
Compos. Struct.
,
94
(
12
), pp.
3697
3709
.10.1016/j.compstruct.2012.05.019
6.
Alijani
,
F.
, and
Amabili
,
M.
,
2014
, “
Nonlinear Vibrations and Multiple Resonances of Fluid Filled Arbitrary Laminated Circular Cylindrical Shells
,”
Compos. Struct.
,
108
(
1
), pp.
951
962
.10.1016/j.compstruct.2013.10.029
7.
Li
,
C.
,
Li
,
P.
,
Zhong
,
B.
, and
Wen
,
B.
,
2019
, “
Geometrically Nonlinear Vibration of Laminated Composite Cylindrical Thin Shells With Non-Continuous Elastic Boundary Conditions
,”
Nonlinear Dyn.
,
95
(
3
), pp.
1903
1921
.10.1007/s11071-018-4667-2
8.
Sanders
,
J. L.
,
1963
, “
Nonlinear Theories for Thin Shells
,”
Q. Appl. Math.
,
21
(
1
), pp.
21
36
.10.1090/qam/147023
9.
Budiansky
,
B.
,
1968
, “
Notes on Nonlinear Shell Theory
,”
J. Appl. Mech. Trans. ASME
,
35
(
2
), pp.
393
401
.10.1115/1.3601208
10.
Ginsberg
,
J. H.
,
1973
, “
Large Amplitude Forced Vibrations of Simply Supported Thin Cylindrical Shells
,”
J. Appl. Mech. Trans. ASME
,
40
(
2
), pp.
471
477
.10.1115/1.3423008
11.
Madabhusi-Raman
,
P.
, and
Davalos
,
J. F.
,
1996
, “
Static Shear Correction Factor for Laminated Rectangular Beams
,”
Compos. Part B Eng.
,
27
(
3–4
), pp.
285
293
.10.1016/1359-8368(95)00014-3
12.
Reddy
,
J. N.
,
1984
, “
A Refined Nonlinear Theory of Plates With Transverse Shear Deformation
,”
Int. J. Solids Struct.
,
20
(
9–10
), pp.
881
896
.10.1016/0020-7683(84)90056-8
13.
Reddy
,
J. N.
,
2004
,
Meсhaniсs of Laminated Сomposite Theory and Analysis Plates and Shells
,
CRC Press
,
New York
.
14.
Carrera
,
E.
,
Brischetto
,
S.
, and
Nali
,
P.
,
2011
,
Plates and Shells for Smart Structures: Classical and Advanced Theories for Modeling and Analysis
,
Wiley
,
Chichester, UK
.
15.
Amabili
,
M.
,
2008
,
Nonlinear Vibrations and Stability of Shells and Plates
,
Cambridge University Press
,
Cambridge, UK
.
16.
Farokhi
,
H.
, and
Ghayesh
,
M. H.
,
2015
, “
Nonlinear Dynamical Behaviour of Geometrically Imperfect Microplates Based on Modified Couple Stress Theory
,”
Int. J. Mech. Sci.
,
90
, pp.
133
144
.10.1016/j.ijmecsci.2014.11.002
17.
Farokhi
,
H.
, and
Ghayesh
,
M. H.
,
2016
, “
Nonlinear Size-Dependent Dynamics of an Imperfect Shear Deformable Microplate
,”
J. Sound Vib.
,
361
, pp.
226
242
.10.1016/j.jsv.2015.09.025
18.
Civalek
,
Ö.
,
2014
, “
Geometrically Nonlinear Dynamic and Static Analysis of Shallow Spherical Shell Resting on Two-Parameters Elastic Foundations
,”
Int. J. Press. Vessel. Pip.
,
113
, pp.
1
9
.10.1016/j.ijpvp.2013.10.014
19.
Arani
,
A. G.
,
Kolahchi
,
R.
, and
Esmailpour
,
M.
,
2016
, “
Nonlinear Vibration Analysis of Piezoelectric Plates Reinforced With Carbon Nanotubes Using DQM
,”
Smart Struct. Syst.
,
18
(
4
), pp.
787
800
.10.12989/sss.2016.18.4.787
20.
Li
,
H.
,
Wu
,
H.
,
Zhang
,
T.
,
Wen
,
B.
, and
Guan
,
Z.
,
2019
, “
A Nonlinear Dynamic Model of Fiber-Reinforced Composite Thin Plate With Temperature Dependence in Thermal Environment
,”
Compos. Part B Eng.
,
162
, pp.
206
218
.10.1016/j.compositesb.2018.10.070
21.
Asadi
,
H.
,
Bodaghi
,
M.
,
Shakeri
,
M.
, and
Aghdam
,
M. M.
,
2013
, “
An Analytical Approach for Nonlinear Vibration and Thermal Stability of Shape Memory Alloy Hybrid Laminated Composite Beams
,”
Eur. J. Mech. A/Solids
,
42
, pp.
454
468
.10.1016/j.euromechsol.2013.07.011
22.
Onkar
,
A. K.
, and
Yadav
,
D.
,
2004
, “
Non-Linear Free Vibration of Laminated Composite Plate With Random Material Properties
,”
J. Sound Vib.
,
272
(
3–5
), pp.
627
641
.10.1016/S0022-460X(03)00387-0
23.
Naidu
,
N. V. S.
, and
Sinha
,
P. K.
,
2007
, “
Nonlinear Free Vibration Analysis of Laminated Composite Shells in Hygrothermal Environments
,”
Compos. Struct.
,
77
(
4
), pp.
475
483
.10.1016/j.compstruct.2005.08.002
24.
Nanda
,
N.
, and
Bandyopadhyay
,
J. N.
,
2007
, “
Nonlinear Free Vibration Analysis of Laminated Composite Cylindrical Shells With Cutouts
,”
J. Reinf. Plast. Compos.
,
26
(
14
), pp.
1413
1427
.10.1177/0731684407079776
25.
Nanda
,
N.
, and
Bandyopadhyay
,
J. N.
,
2008
, “
Large Amplitude Free Vibration of Laminated Composite Shells With Cutout
,”
Aircr. Eng. Aerosp. Technol.
,
80
(
2
), pp.
165
174
.10.1108/00022660810859382
26.
Ghannadpour
,
S. A. M.
, and
Mehrparvar
,
M.
,
2020
, “
Modeling and Evaluation of Rectangular Hole Effect on Nonlinear Behavior of Imperfect Composite Plates by an Effective Simulation Technique
,”
Compos. Mater. Eng.
,
2
(
1
), pp.
25
41
.10.12989/cme.2020.2.1.025
27.
Tang
,
H.
, and
Dai
,
H.
,
2021
, “
Nonlinear Vibration Analysis of CFRP Spherical Shell Panel Under Hygrothermal Effects
,”
Compos. Struct.
,
274
, p.
114343
.10.1016/j.compstruct.2021.114343
28.
Devarajan
,
B.
,
2021
, “
Free Vibration Analysis of Curvilinearly Stiffened Composite Plates With an Arbitrarily Shaped Cutout Using Isogeometric Analysis
,”
Int. J. Eng. Sci.
, pp.
1
33
.10.48550/arXiv.2104.12856
29.
Huang
,
X.-L.
,
Shen
,
H.-S.
, and
Zheng
,
J.-J.
,
2004
, “
Nonlinear Vibration and Dynamic Response of Shear Deformable Laminated Plates in Hygrothermal Environments
,”
Compos. Sci. Technol.
,
64
(
10–11
), pp.
1419
1435
.10.1016/j.compscitech.2003.09.028
30.
Szekrényes
,
A.
,
2021
, “
Higher-Order Semi-Layerwise Models for Doubly Curved Delaminated Composite Shells
,”
Arch. Appl. Mech.
,
91
(
1
), pp.
61
90
.10.1007/s00419-020-01755-7
31.
Parhi
,
A.
,
Singh
,
B. N.
, and
Panda
,
S. K.
,
2021
, “
Nonlinear Free Vibration Analysis of Composite Conical Shell Panel With Cluster of Delamination in Hygrothermal Environment
,”
Eng. Comput.
,
37
(
2
), pp.
1565
1577
.10.1007/s00366-019-00903-0
32.
Mehar
,
K.
,
Panda
,
S. K.
,
Bui
,
T. Q.
, and
Mahapatra
,
T. R.
,
2017
, “
Nonlinear Thermoelastic Frequency Analysis of Functionally Graded CNT-Reinforced Single/Doubly Curved Shallow Shell Panels by FEM
,”
J. Therm. Stress.
,
40
(
7
), pp.
899
916
.10.1080/01495739.2017.1318689
33.
Sit
,
M.
, and
Ray
,
C.
,
2019
, “
A Third Order Nonlinear Model to Study the Dynamic Behaviour of Composite Laminated Structures Under Thermal Effect With Experimental Verification
,”
Compos. Struct.
,
212
, pp.
106
117
.10.1016/j.compstruct.2019.01.017
34.
Amabili
,
M.
,
2013
, “
A New Nonlinear Higher-Order Shear Deformation Theory With Thickness Variation for Large-Amplitude Vibrations of Laminated Doubly Curved Shells
,”
J. Sound Vib.
,
332
(
19
), pp.
4620
4640
.10.1016/j.jsv.2013.03.024
35.
Al-Furjan
,
M. S. H.
,
Habibi
,
M.
,
Chen
,
G.
,
Safarpour
,
H.
,
Safarpour
,
M.
, and
Tounsi
,
A.
,
2020
, “
Chaotic Oscillation of a Multi-Scale Hybrid Nano-Composites Reinforced Disk Under Harmonic Excitation Via GDQM
,”
Compos. Struct.
,
252
, p.
112737
.10.1016/j.compstruct.2020.112737
36.
Li
,
Z.
,
Chen
,
X.
, and
Yu
,
H.
,
2014
, “
Large-Amplitude Vibration Analysis of Shear Deformable Laminated Composite Cylindrical Shells With Initial Imperfections in Thermal Environments
,”
J. Eng. Mech.
,
140
(
3
), pp.
552
565
.10.1061/(ASCE)EM.1943-7889.0000675
37.
Tran
,
L. V.
,
Lee
,
J.
,
Nguyen-Van
,
H.
,
Nguyen-Xuan
,
H.
, and
Wahab
,
M. A.
,
2015
, “
Geometrically Nonlinear Isogeometric Analysis of Laminated Composite Plates Based on Higher-Order Shear Deformation Theory
,”
Int. J. Non. Linear. Mech.
,
72
, pp.
42
52
.10.1016/j.ijnonlinmec.2015.02.007
38.
Shen
,
H.-S.
, and
Wang
,
Z.-X.
,
2012
, “
Nonlinear Vibration of Hybrid Laminated Plates Resting on Elastic Foundations in Thermal Environments
,”
Appl. Math. Model.
,
36
(
12
), pp.
6275
6290
.10.1016/j.apm.2012.02.001
39.
Fan
,
Y.
, and
Wang
,
H.
,
2017
, “
The Effects of Matrix Cracks on the Nonlinear Vibration Characteristics of Shear Deformable Laminated Beams Containing Carbon Nanotube Reinforced Composite Layers
,”
Int. J. Mech. Sci.
,
124–125
, pp.
216
228
.10.1016/j.ijmecsci.2017.03.016
40.
Shen
,
H.-S.
,
2013
, “
Boundary Layer Theory for the Nonlinear Vibration of Anisotropic Laminated Cylindrical Shells
,”
Compos. Struct.
,
97
, pp.
338
352
.10.1016/j.compstruct.2012.10.027
41.
Kar
,
V. R.
, and
Panda
,
S. K.
,
2016
, “
Nonlinear Thermomechanical Behavior of Functionally Graded Material Cylindrical/Hyperbolic/Elliptical Shell Panel With Temperature-Dependent and Temperature-Independent Properties
,”
ASME J. Pressure Vessel Technol.
,
138
(
6
), p.
061202
.10.1115/1.4033701
42.
Mehar
,
K.
,
Mishra
,
P. K.
, and
Panda
,
S. K.
,
2021
, “
Thermal Post-Buckling Strength Prediction and Improvement of Shape Memory Alloy Bonded Carbon Nanotube-Reinforced Shallow Shell Panel: A Nonlinear Finite Element Micromechanical Approach
,”
ASME J. Pressure Vessel Technol.
,
143
(
6
), p.
061301
.10.1115/1.4050934
43.
Katariya
,
P. V.
,
Mehar
,
K.
, and
Panda
,
S. K.
,
2020
, “
Nonlinear Dynamic Responses of Layered Skew Sandwich Composite Structure and Experimental Validation
,”
Int. J. Non. Linear. Mech.
,
125
, p.
103527
.10.1016/j.ijnonlinmec.2020.103527
44.
Parhi
,
A.
, and
Singh
,
B. N.
,
2017
, “
Nonlinear Free Vibration Analysis of Shape Memory Alloy Embedded Laminated Composite Shell Panel,” Mech
,”
Adv. Mater. Struct.
,
24
(
9
), pp.
713
724
.10.1080/15376494.2016.1196777
45.
Kar
,
V. R.
, and
Panda
,
S. K.
,
2015
, “
Thermoelastic Analysis of Functionally Graded Doubly Curved Shell Panels Using Nonlinear Finite Element Method
,”
Compos. Struct.
,
129
, pp.
202
212
.10.1016/j.compstruct.2015.04.006
46.
Finney
,
R. H.
,
1987
,
Application of Finite Element Analysis
,
Wiley
,
Hoboken, NJ
.
47.
Dewangan
,
H. C.
,
Sharma
,
N.
, and
Panda
,
S. K.
,
2021
, “
Numerical Nonlinear Static Analysis of Cutout-Borne Multilayered Structures and Experimental Validation
,”
AIAA J.
, 60(2), pp.
1
13
.10.2514/1.J060643
48.
Mukhopadhyay
,
M.
, and
Sheikh
,
A. H.
,
2008
,
Matrix and Finite Element Analysis of Structures
,
Ane Books
,
Delhi, India
.
49.
Dewangan
,
H. C.
, and
Panda
,
S. K.
,
2021
, “
Numerical Transient Responses of Cut-Out Borne Composite Panel and Experimental Validity
,”
Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng.
,
235
(
11
), pp.
1521
1536
.10.1177/0954410020977344
50.
Dewangan
,
H. C.
,
Sharma
,
N.
,
Hirwani
,
C. K.
, and
Panda
,
S. K.
,
2020
, “
Numerical Eigenfrequency and Experimental Verification of Variable Cutout (Square/Rectangular) Borne Layered Glass/Epoxy Flat/Curved Panel Structure
,”
Mech. Based Des. Struct. Mach.
, 50(5), pp.
1640
1657
.10.1080/15397734.2020.1759432
51.
Karadeniz
,
Z. H.
, and
Kumlutas
,
D.
,
2007
, “
A Numerical Study on the Coefficients of Thermal Expansion of Fiber Reinforced Composite Materials
,”
Compos. Struct.
,
78
(
1
), pp.
1
10
.10.1016/j.compstruct.2005.11.034
52.
Liu
,
C.
, and
Huang
,
C.
,
1996
, “
Free Vibration of Composite Laminated Plates Subjected to Temperature Changes
,”
Comput. Struct.
,
60
(
1
), pp.
95
101
.10.1016/0045-7949(95)00358-4
53.
Asadi
,
H.
,
Bodaghi
,
M.
,
Shakeri
,
M.
, and
Aghdam
,
M. M.
,
2013
, “
On the Free Vibration of Thermally Pre/Post-Buckled Shear Deformable SMA Hybrid Composite Beams
,”
Aerosp. Sci. Technol.
,
31
(
1
), pp.
73
86
.10.1016/j.ast.2013.09.008
You do not currently have access to this content.