Abstract

Pipe elbows are essential connection components between the storage terminal and conveying pipelines in the petrochemical industry, which are prone to rupture and perforation under various potential impact loads. In this paper, the rupture and perforation responses of pressurized pipe elbows subjected to transverse impact loads were systematically investigated. Perforation phenomena of pipe elbows were qualitatively analyzed to identify the failure modes and features. Perforation mechanisms of mode transition, transient deflection, velocity variation, and stress distribution were systematically discussed. Extensive parametric studies were performed to investigate the deflection and mechanical responses. Parametric equations were established to describe the critical impact resistance. These results revealed the perforation phenomena and impact limits of pipe elbows subjected to impact loads, which are informative for protection design and damage assessment of pressurized pipe elbows.

References

1.
Chatzopoulou
,
G.
, and
Karamanos
,
S. A.
,
2020
, “
Numerical Simulation of the Mechanical Behaviour of Steel Pipe Bends Under Strong Cyclic Loading
,”
Int. J. Pressure Vessels Piping
,
188
, p.
104239
.10.1016/j.ijpvp.2020.104239
2.
Macdonald
,
K. A.
,
Cosham
,
A.
,
Alexander
,
C. R.
, and
Hopkins
,
P.
,
2007
, “
Assessing Mechanical Damage in Offshore Pipelines—Two Case Studies
,”
Eng. Fail. Anal.
,
14
(
8
), pp.
1667
1679
.10.1016/j.engfailanal.2006.11.074
3.
Xue
,
J.
, and
Hoo Fatt
,
M. S.
,
2001
, “
Buckle Propagation in Pipelines With Non-Uniform Thickness
,”
Ocean Eng.
,
28
(
10
), pp.
1383
1392
.10.1016/S0029-8018(00)00056-1
4.
Yu
,
Z.
, and
Amdahl
,
J.
,
2018
, “
A Review of Structural Responses and Design of Offshore Tubular Structures Subjected to Ship Impacts
,”
Ocean Eng.
,
154
(
15
), pp.
177
203
.10.1016/j.oceaneng.2018.02.009
5.
Zhang
,
R.
,
Zhi
,
D.
, and
Fan
,
F.
,
2018
, “
Plastic Behavior of Circular Steel Tubes Subjected to Low-Velocity Transverse Impact
,”
Int. J. Impact Eng.
,
114
, pp.
1
19
.10.1016/j.ijimpeng.2017.12.003
6.
Karamanos
,
S. A.
,
Tsouvalas
,
D.
, and
Gresnigt
,
A. M.
,
2006
, “
Ultimate Bending Capacity and Buckling of Pressurized 90 Deg Steel Elbows
,”
ASME J. Pressure Vessel Technol.
,
128
(
3
), pp.
348
356
.10.1115/1.2217967
7.
Balan
,
C.
, and
Redekop
,
D.
,
2005
, “
The Effect of Bi-Directional Loading on Fatigue Assessment of Pressurized Piping Elbows With Local Thinned Areas
,”
Int. J. Pressure Vessels Piping
,
82
(
3
), pp.
235
242
.10.1016/j.ijpvp.2004.07.020
8.
Tan
,
Y.
,
Matzen
,
V. C.
, and
Yu
,
L.
,
2002
, “
Correlation of Test and FEA Results for the Nonlinear Behavior of Straight Pipes and Elbows
,”
ASME J. Pressure Vessel Technol.
,
124
(
4
), pp.
465
475
.10.1115/1.1493806
9.
Muthanna
,
B. G. N.
,
Bouledroua
,
O.
,
Meriem-Benziane
,
M.
,
Setvati
,
M. R.
, and
Djukic
,
M. B.
,
2021
, “
Assessment of Corroded API 5 L X52 Pipe Elbow Using a Modified Failure Assessment Diagram
,”
Int. J. Pressure Vessels Piping
,
190
, p.
104291
.10.1016/j.ijpvp.2020.104291
10.
Phan
,
H. C.
,
Le
,
T. T.
,
Bui
,
N. D.
,
Duong
,
H. T.
, and
Pham
,
T. D.
,
2021
, “
An Empirical Model for Bending Capacity of Defected Pipe Combined With Axial Load
,”
Int. J. Pressure Vessels Piping
,
191
, p.
104368
.10.1016/j.ijpvp.2021.104368
11.
Zhou
,
Y.
, and
Zhang
,
S.
,
2021
, “
Rupture and Perforation Responses of Pressurized Tubular Members Subjected to Medium-Velocity Transverse Impact Loading
,”
Eng. Fai. Anal.
,
127
, p.
105387
.10.1016/j.engfailanal.2021.105387
12.
Yu
,
J. L.
,
Yan
,
X. Q.
, and
Chen
,
L.
,
2011
, “
Finite Element Simulation on Failure of Elbow Impacted by Flat-Nosed Missile
,”
Appl. Mech. Mater.
,
105–107
, pp.
38
42
.10.4028/www.scientific.net/AMM.105-107.38
13.
Mitsuya
,
M.
, and
Sakanoue
,
T.
,
2015
, “
Rupture Prediction for Induction Bends Under Opening Mode Bending With Emphasis on Strain Localization
,”
Int. J. Pressure Vessels Piping
,
135–136
, pp.
1
11
.10.1016/j.ijpvp.2015.09.003
14.
Jaćimović
,
N.
,
Ivančić
,
Z.
, and
Ivošević
,
M.
,
2021
, “
Finite Element Analysis of 90 Degree Pipe Elbow Sustained Stress Indices
,”
Int. J. Pressure Vessels Piping
,
192
, p.
104401
.10.1016/j.ijpvp.2021.104401
15.
Harun
,
M.
,
Shamsudin
,
S. R.
, and
Kamardin
,
A.
,
2010
, “
Failure Analysis on a Ruptured Petrochemical Pipe
,”
Pract. Metallogr.
,
47
(
8
), pp.
443
452
.10.3139/147.110065
16.
Børvik
,
T.
,
Langseth
,
M.
,
Hopperstad
,
O. S.
, and
Malo
,
K. A.
,
1999
, “
Ballistic Penetration of Steel Plates
,”
Int. J. Impact Eng.
,
22
(
9–10
), pp.
855
886
.10.1016/S0734-743X(99)00011-1
17.
Nishida
,
M.
, and
Tanaka
,
K.
,
2006
, “
Experimental Study of Perforation and Cracking of Water-Filled Aluminum Tubes Impacted by Steel Spheres
,”
Int. J. Impact Eng.
,
32
(
12
), pp.
2000
2016
.10.1016/j.ijimpeng.2005.06.010
18.
Børvik
,
T.
,
Hopperstad
,
O. S.
,
Berstad
,
T.
, and
Langseth
,
M.
,
2001
, “
Numerical Simulation of Plugging Failure in Ballistic Penetration
,”
Int. J. Solids Struct.
,
38
(
34–35
), pp.
6241
6264
.10.1016/S0020-7683(00)00343-7
19.
Bai
,
Y.
, and
Bai
,
Q.
,
2010
,
Subsea Engineering Handbook
,
Gulf Professional Publishing
,
New York
, pp.
915
919
.
20.
DNV
,
2010
,
Submarine Pipeline Systems
,
Det Norske Veritas
,
Norway
, Standard No. DNV-OS-F101.
21.
Engineering ToolBox
,
2005
, “Barlow's Formula—Internal, Allowable and Bursting Pressure,” Engineering ToolBox, online, accessed Mar. 18, 2022, https://www.engineeringtoolbox.com/barlow-d_1003.html
22.
Johnson
,
G. R.
, and
Holmquist
,
T. J.
,
1988
, “
Evaluation of Cylinder-Impact Test Data for Constitutive Model Constants Evaluation of cylinder-Impact Test Data for Constitutive Model Constants
,”
J. Appl. Phys.
,
64
(
8
), pp.
3901
3910
.10.1063/1.341344
23.
Steinberg
,
D. J.
,
Cochran
,
S. G.
, and
Guinan
,
M. W.
,
1980
, “
A Constitutive Model for Metals Applicable at High-Strain Rate
,”
J. Appl. Phys.
,
51
(
3
), pp.
1498
1503
.10.1063/1.327799
24.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1985
, “
Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures
,”
Eng. Fract. Mech.
,
21
(
1
), pp.
31
48
.10.1016/0013-7944(85)90052-9
25.
Kristoffersen
,
M.
,
Casadei
,
F.
,
Børvik
,
T.
,
Langseth
,
M.
, and
Hopperstad
,
O. S.
,
2014
, “
Impact Against Empty and Water-Filled X65 Steel Pipes—Experiments and Simulations
,”
Int. J. Impact Eng.
,
71
, pp.
73
88
.10.1016/j.ijimpeng.2014.04.004
26.
DNV
,
2010
,
Interference Between Trawl Gear and Pipelines
,
Det Norske Veritas
,
Norway
, Standard No. DNV-RP-F111, pp.
272
277
.
27.
Bai
,
Y.
, and
Preben
,
T. P.
,
1993
, “
Elastic-Plastic Behaviour of Offshore Steel Structures Under Impact Loads
,”
Int. J. Impact Eng.
,
13
(
1
), pp.
99
115
.10.1016/0734-743X(93)90110-S
28.
Landkof
,
B.
, and
Goldsmith
,
W.
,
1985
, “
Petalling of Thin, Metallic Plates During Penetration by Cylindro-Conical Projectiles
,”
Int. J. Solids Struct.
,
21
(
3
), pp.
245
266
.10.1016/0020-7683(85)90021-6
29.
Shen
,
W. Q.
,
Rieve
,
N. O.
, and
Baharun
,
B.
,
2002
, “
A Study on the Failure of Circular Plates Struck by Masses. Part 1: Experimental Results
,”
Int. J. Impact Eng.
,
27
(
4
), pp.
399
412
.10.1016/S0734-743X(01)00146-4
30.
Wang
,
y.
,
Zhao
,
Y.
,
Ma
,
w.
, and
He
,
g.
,
2016
, “
A Numerical Study on the High-Velocity Impact Behavior of Pressure Pipes
,”
J Zhejiang Univ.-Sci. A
,
17
(
6
), pp.
443
453
.10.1631/jzus.A1500112
31.
Zhang
,
J.
,
Liang
,
Z.
, and
Han
,
J. C.
,
2014
, “
Failure Analysis and Finite Element Simulation of Above Ground Oil-Gas Pipeline Impacted by Rockfall
,”
J. Fail. Anal. Prev.
,
14
(
4
), pp.
530
536
.10.1007/s11668-014-9847-x
You do not currently have access to this content.