Abstract

Wound tube, which is an important component of coil-wound heat exchanger (CWHE), is subjected to cross-flow impacting and thereby vibrating. Owing to investigating flow-induced vibration (FIV) of wound tubes, it is essential to study the vibration characteristics of the tubes. In this paper, the natural vibration characteristics of wound tube, which was divided into curved tube and coil tube based on support conditions, were studied in detail. And experiments, numerical simulations, and calculation methods were carried out. First, the structures of the two tubes were described parametrically. Afterwards, vibration experiments proved the reliability of numerical simulations of the tubes. Furthermore, calculation methods for the fundamental frequencies of the two tubes were proposed, the accuracies of which were further proven by comparison with simulation results. In addition, the first three mode shapes of the curved tube and coil tube were bending vibration modes. Then the influence of structural parameters on the fundamental frequency was discussed and the independence of parameters was demonstrated. The effects of the variables of the layer pitch ratio, a, the same layer pitch ratio, b, and helix angle, α, on the added mass coefficient, Cm, were ultimately investigated. In general, this paper provides a technical basis to evaluate the design and machining for design and supervision staff.

References

1.
Weikl
,
M. C.
,
Braun
,
K.
, and
Weiss
,
J.
,
2014
, “
Coil-Wound Heat Exchangers for Molten Salt Applications
,”
Energy Procedia
,
49
, pp.
1054
1060
.10.1016/j.egypro.2014.03.113
2.
Jian
,
G. P.
,
Wang
,
S. M.
,
Sun
,
L. J.
,
Tong
,
X.
,
Wen
,
J.
, and
Tu
,
J. Y.
,
2019
, “
Numerical Investigation on the Application of Elliptical Tubes in a Spiral-Wound Heat Exchanger Used in LNG Plant
,”
Int. J. Heat Mass Transfer
,
130
, pp.
333
341
.10.1016/j.ijheatmasstransfer.2018.10.089
3.
Kim
,
N.
,
Kim
,
H.
,
Eoh
,
J.
,
Kim
,
M. H.
, and
Jo
,
H. J.
,
2020
, “
One-Dimensional Design Approach to Integrated Steam Generator With Helical-Coil Tube Bundles for a Sodium-Cooled Fast Reactor
,”
Nucl. Eng. Des.
,
361
, p.
110554
.10.1016/j.nucengdes.2020.110554
4.
Abolmaali
,
A. M.
, and
Afshin
,
H.
,
2020
, “
Numerical Study of Heat Transfer Between Shell-Side Fluid and Shell Wall in the Spiral-Wound Heat Exchangers
,”
Int. J. Refrig.
,
120
, pp.
285
295
.10.1016/j.ijrefrig.2020.08.010
5.
Ingersoll
,
D. T.
,
Houghton
,
Z. J.
,
Bromm
,
R.
, and
Desportes
,
C.
,
2014
, “
NuScale Small Modular Reactor for Co-Generation of Electricity and Water
,”
Desalination
,
340
, pp.
84
93
.10.1016/j.desal.2014.02.023
6.
Huang
,
J.
,
Gou
,
J.
,
Mao
,
H.
, and
Shan
,
J.
,
2020
, “
Development of a Thermal-Hydraulic Analysis Code for Helically Coiled Once-Through Steam Generator
,”
Nucl. Eng. Des.
,
364
, p.
110642
.10.1016/j.nucengdes.2020.110642
7.
Lian
,
Q.
,
Tian
,
W. X.
,
Gao
,
X. L.
,
Chen
,
R. H.
,
Qiu
,
S. Z.
, and
Su
,
G. H.
,
2020
, “
Code Improvement, Separate-Effect Validation, and Benchmark Calculation for Thermal-Hydraulic Analysis of Helical Coil Once-Through Steam Generator
,”
Ann. Nucl. Energy
,
141
, pp.
1
21
.10.1016/j.anucene.2020.107333
8.
Wu
,
J. X.
,
Tian
,
Q. H.
,
Sun
,
X. Z.
,
Zhao
,
J. Y.
,
Wang
,
L.
,
Peng
,
X.
, and
Liao
,
X. Y.
,
2019
, “
Numerical Simulation and Experimental Research on the Comprehensive Performance of the Shell Side of the Spiral Wound Heat Exchanger
,”
Appl. Therm. Eng.
,
163
, p.
114381
.10.1016/j.applthermaleng.2019.114381
9.
Pettigrew
,
M. J.
, and
Taylor
,
C. E.
,
2003
, “
Vibration Analysis of Shell-and-Tube Heat Exchangers: An Overview—Part 1: Flow, Damping, Fluidelastic Instability
,”
J. Fluid Struct.
,
18
(
5
), pp.
469
483
.10.1016/j.jfluidstructs.2003.08.007
10.
Pettigrew
,
M. J.
, and
Taylor
,
C. E.
,
2003
, “
Vibration Analysis of Shell-and-Tube Heat Exchangers: An Overview—Part 2: Vibration Response, Fretting-Wear, Guidelines
,”
J. Fluid Struct.
,
18
(
5
), pp.
485
500
.10.1016/j.jfluidstructs.2003.08.008
11.
Liu
,
L. Y.
,
Feng
,
J. X.
,
Hao Wu
,
H.
,
Xu
,
W.
, and
Tan
,
W.
,
2017
, “
Fluid Excitation Forces on a Tightly Packed Tube Bundle Subjected in Cross-Flow
,”
ASME J. Pressure Vessel Technol.
,
139
(
3
), pp.
1
8
.10.1115/1.4035318
12.
Guo
,
K.
,
Xu
,
W.
,
Jia
,
Z. B.
, and
Tan
,
W.
,
2020
, “
Investigation of Fluid-Elastic Instability in Tube Arrays at Low Mass Damping Parameters in Cross-Flow
,”
ASME J. Pressure Vessel Technol.
,
142
, p.
011401
.10.1115/1.4045022
13.
Connors
,
H. J.
,
1978
, “
Fluidelastic Vibration of Heat Exchanger Tube Arrays
,”
ASME J. Mech. Des.
,
100
(
2
), pp.
347
353
.10.1115/1.3453921
14.
Chen
,
S. S.
,
Jendrzejczyk
,
J. A.
, and
Wambsganss
,
M. W.
,
1983
, “
Tube Vibration in a Half-Scale Sector Model of a Helical Tube Steam Generator
,”
J. Sound Vib.
,
91
(
4
), pp.
539
569
.10.1016/0022-460X(83)90832-5
15.
Yuan
,
H. M.
,
Solberg
,
J.
,
Merzari
,
E.
,
Kraus
,
A.
, and
Grindeanu
,
I.
,
2017
, “
Flow-Induced Vibration Analysis of a Helical Coil Steam Generator Experiment Using Large Eddy Simulation
,”
Nucl. Eng. Des.
,
322
, pp.
547
562
.10.1016/j.nucengdes.2017.07.029
16.
Bo
,
H. L.
,
Song
,
Z. J.
, and
Shen
,
S. F.
,
1993
, “
Experimental Study of Flow Induced Vibration on Helical Tubes
,”
Nucl. Pow. Eng.
,
14
(
3
), pp.
232
237
(in Chinese).https://inis.iaea.org/search/search.aspx?orig_q=RN:25003369
17.
Bo
,
H. L.
, and
Ma
,
C. W.
,
2001
, “
Flow Induced Vibration of Heat Transfer Helical Tube on Steam Generator of 10 MW HTR
,”
Nucl. Pow. Eng.
,
22
(
3
), pp.
232
236
(in Chinese)https://inis.iaea.org/search/search.aspx?orig_q=RN:32063041.
18.
Yan
,
K.
,
Ge
,
P. Q.
,
Bi
,
W. B.
,
Su
,
Y. C.
, and
Hu
,
R. R.
,
2010
, “
Vibration Characteristics of Fluid-Structure Interaction of Conical Spiral Tube Bundle
,”
J. Hydrodyn.
,
22
(
1
), pp.
121
128
.10.1016/S1001-6058(09)60036-6
19.
Yan
,
K.
,
Ge
,
P. Q.
,
Su
,
Y. C.
, and
Bi
,
W. B.
,
2010
, “
Mathematical Analysis of Transverse Vibration of Conical Spiral Tube Bundle With External Fluid Flow
,”
J. Hydrodyn.
,
22
(
6
), pp.
816
822
.10.1016/S1001-6058(09)60121-9
20.
Jo
,
J. C.
, and
Jhung
,
M. J.
,
2008
, “
Flow-Induced Vibration and Fretting-Wear Predictions of Steam Generator Helical Tubes
,”
Nucl. Eng. Des.
,
238
(
4
), pp.
890
903
.10.1016/j.nucengdes.2006.12.001
21.
Xu
,
X. Q.
,
Mallet
,
M.
, and
Liszkai
,
T.
,
2014
, “
Turbulent Buffeting of Helical Coil Steam Generator Tubes
,”
ASME
Paper No. PVP2014-28868.10.1115/PVP2014-28868
22.
Guo
,
X.
,
Cai
,
J.
, and
Wang
,
Y. D.
,
2018
, “
Modal Analysis of the Helical Tube in a Small Nuclear Reactor's Steam Generator Using a Finite Element Method
,”
Ann. Nucl. Energy
,
114
, pp.
354
358
.10.1016/j.anucene.2017.12.006
23.
He
,
Y.
,
Xiao
,
Y.
,
Liu
,
Y. Q.
, and
Zhang
,
Z.
,
2018
, “
An Efficient Finite Element Method for Computing Modal Damping of Laminated Composites: Theory and Experiment
,”
Compos. Struct.
,
184
, pp.
728
741
.10.1016/j.compstruct.2017.10.024
24.
Grimes
,
R. G.
,
Lewis
,
J. G.
, and
Simon
,
H. D.
,
1994
, “
A Shifted Block Lanczos Algorithm for Solving Sparse Symmetric Generalized Eigenproblems
,”
SIAM J. Appl. Math.
,
15
(
1
), pp.
228
272
.10.1137/S0895479888151111
25.
Guo
,
J.
,
Zhao
,
X.
,
Zhang
,
Y.
,
Ji
,
C.
, and
Taranukha
,
N. A.
,
2020
, “
A Simplified Boundary Condition Method for Conducting Shock Resistance Analyses of Ship Piping Systems
,”
Int. J. Pres. Ves. Pip.
,
180
, p.
104041
.10.1016/j.ijpvp.2020.104041
26.
Zhang
,
H.
,
Chang
,
S. M.
, and
Kang
,
S. H.
,
2019
, “
Low-Frequency Modes in the Fluid-Structure Interaction of a U-Tube Model for the Steam Generator in a PWR
,”
Nucl. Eng. Technol.
,
51
(
4
), pp.
1008
1016
.10.1016/j.net.2019.02.005
27.
Revanasiddesh
,
B. V.
,
Taj
,
A. P.
,
Kumar
,
N. N.
, and
Suresh
,
B. S.
,
2020
, “
Extraction of Modal Parameters of CNC Lathe Bed Using Finite Element and Experimental Method
,”
Mater. Today Proc.
,
24
, pp.
398
405
.10.1016/j.matpr.2020.04.291
28.
Zhou
,
D.
,
Cheung
,
Y. K.
, and
Lo
,
S. H.
,
2010
, “
Three-Dimensional Vibration Analysis of Toroidal Sectors With Solid Circular Cross-Sections
,”
ASME J. Appl. Mech.
,
77
(
4
), p.
041002
.10.1115/1.4000906
29.
Moretti
,
P. M.
, and
Lowery
,
R. L.
,
1976
, “
Hydrodynamic Inertia Coefficients for a Tube Surrounded ty Ligid Tubes
,”
ASME J. Pressure Vessel Technol.
, 9
8
(3), pp.
190
193
.10.1115/1.3454398
30.
Fan
,
X. T.
,
Guo
,
K.
,
Jia
,
Z. B.
,
Wang
,
Y.
, and
Tan
,
W.
,
2020
, “
Vibration Mode and Velocity Interference Mechanism of Tandem Cylinders at Subcritical Reynolds Number
,”
J. Wind Eng. Ind. Aerod.
,
199
, p.
104136
.10.1016/j.jweia.2020.104136
31.
Fan
,
X. T.
,
Wang
,
Z. C.
,
Wang
,
Y.
, and
Tan
,
W.
,
2021
, “
The Effect of Vortices Structures on the Flow-Induced Vibration of Three Flexible Tandem Cylinders
,”
Int. J. Mech. Sci.
,
192
, p.
106132
.10.1016/j.ijmecsci.2020.106132
32.
Liu
,
Y.
,
Guan
,
X. R.
, and
Xu
,
C.
,
2017
, “
A Production Limiter Study of SST-SAS Turbulence Model for Bluff Body Flows
,”
J. Wind Eng. Ind. Aerod.
,
170
, pp.
162
178
.10.1016/j.jweia.2017.08.014
33.
Munoz-Paniagua
,
J.
,
García
,
J.
, and
Lehugeur
,
B.
,
2017
, “
Evaluation of RANS, SAS and IDDES Models for the Simulation of the Flow Around a High-Speed Train Subjected to Crosswind
,”
J. Wind Eng. Ind. Aerod.
,
171
, pp.
50
66
.10.1016/j.jweia.2017.09.006
34.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
35.
Timoshenko
,
S.
,
Young
,
D. H.
, and
Weaver
,
W.
,
1968
,
Vibration Problems in Engineering
, 5th ed.,
Wiley
, Hoboken, NJ.
36.
Chinka
,
S. S. B.
,
Putti
,
S. R.
, and
Adavi
,
B. K.
,
2021
, “
Modal Testing and Evaluation of Cracks on Cantilever Beam Using Mode Shape Curvatures and Natural Frequencies
,”
Structures
,
32
, pp.
1386
1397
.10.1016/j.istruc.2021.03.049
37.
Mane
,
S. G.
,
Chalapati
,
M. T. K. S.
, and
Ramini
,
S.
,
2015
, “
Estimation of Transverse Vibrations in Beams
,”
IJMETMR
,
2
(
12
), pp.
1273
1285
.http://www.ijmetmr.com/oldecember2015/SnehaGulabMane-KSrinivasaChalapati-SandeepRamini-A-36.pdf
38.
Nie
,
Q. D.
,
Duan
,
Z. Y.
, and
Tan
,
W.
,
2003
, “
Numerical Solution for the Natural Frequencies of Hanging Tower
,”
J. Pressure Vessel Technol.
,
20
(
5
), pp.
29
33
(in Chinese).
39.
Liu
,
M.
,
Wang
,
Z.
,
Zhou
,
Z.
,
Qu
,
Y.
,
Yu
,
Z.
,
Wei
,
Q.
, and
Lu
,
L.
,
2018
, “
Vibration Response of Multi-Span Fluid-Conveying Pipe With Multiple Accessories Under Complex Boundary Conditions
,”
Eur. J. Mech. A-Solid
,
72
, pp.
41
56
.10.1016/j.euromechsol.2018.03.008
40.
Yu
,
J. L.
,
Wang
,
H. J.
, and
Zhang
,
J.
,
2009
, “
Neural Network Modeling and Analysis of Gel Casting Preparation of Porous Si3N4 Ceramics
,”
Ceram. Int.
,
35
(
7
), pp.
2943
2950
.10.1016/j.ceramint.2009.04.008
41.
Deng
,
L. N.
,
Feng
,
B.
, and
Zhang
,
Y.
,
2018
, “
An Optimization Method for Multi-Objective and Multi-Factor Designing of a Ceramic Slurry: Combining Orthogonal Experimental Design With Artificial Neural Networks
,”
Ceram. Int.
,
44
(
13
), pp.
15918
15923
.10.1016/j.ceramint.2018.06.010
42.
Kang
,
P.
,
Zhao
,
Q.
,
Guo
,
S.
,
Xue
,
W.
,
Liu
,
H.
,
Chao
,
Z.
,
Jiang
,
L.
, and
Wu
,
G.
,
2021
, “
Optimisation of the Spark Plasma Sintering Process for High Volume Fraction SiCp/Al Composites by Orthogonal Experimental Design
,”
Ceram. Int.
,
47
(
3
), pp.
3816
3825
.10.1016/j.ceramint.2020.09.240
43.
Taghizadegan
,
S.
,
2006
, “
Appendix VIII - Upper Critical Values of the F-Distribution for df1 Numerator Degrees of Freedom and df2 Denominator Degrees of Freedom
,”
Essentials of Lean Six Sigma
, Burlington, VT, pp.
251
263
.
44.
Rahman
,
M.
, and
Bhatta
,
D. D.
,
1993
, “
Evaluation of Added Mass and Damping Coefficient of an Oscillating Circular Cylinder
,”
Appl. Math. Model.
,
17
(
2
), pp.
70
79
.10.1016/0307-904X(93)90095-X
45.
Pettigrew
,
M. J.
,
Rogers
,
R. J.
, and
Axisa
,
F.
,
2011
, “
Damping of Heat Exchanger Tubes in Liquids: Review and Design Guidelines
,”
ASME J. Pressure Vessel Technol.
,
133
(
1
), p.
014002
.10.1115/1.4000711
You do not currently have access to this content.