Abstract

One of the steels commonly used in the industry in mechanical devices, tools, and structural steels is SAE 1045. A possible replacement for this alloy is SAE 15B30 with similar mechanical properties and has been used in the automotive and construction industry. To select an alloy, care is needed, for example, weldability. Making a comparative study of these alloys, can boron steel replace SAE 1045? Knowing that boron steels have high hardenability but may have improved weldability due to the low carbon equivalent. Therefore, it is extremely important to know the factors that can interfere with the quality of the final product after the welding processes, as the mechanical properties and microstructures in the heat-affected zone (HAZ) may change. Knowing that in the automotive and civil sector we have several welding processes, it is extremely important to know the results of a boron steel after a welding process; thus, this work intends to compare the weldability of SAE 15B30 and SAE 1045 welded by shielded metal arc welding (SMAW) and also to analyze the microstructural changes after welding by optical microscopy, scanning electron microscopy, and its relationship with hardness using the test of Vickers microhardness. To perform the welds, both in SAE 1045 steel and in SAE 15B30 steel, the butt joint with a V-shaped chamfer was chosen. The results showed that the boron steel, with high hardenability, obtained a microstructure with bainite in the coarse-grained heat-affected zone (CGHAZ), unlike SAE 1045, which presented pearlitic microstructure. In addition, the hardness of boron steel increased by approximately 90% over the base metal (BM), and the hardness of SAE 1045 increased close to 50% over the BM.

References

1.
Kasuya
,
T.
, and
Yurioka
,
N.
,
1993
, “
Prediction of Welding Thermal History by a Comprehensive Solution
,”
Weld. J.
,
72
, pp.
107 s
115 s
.http://files.aws.org/wj/supplement/WJ_1993_03_s107.pdf
2.
Ibarra
,
S.
,
Olson
,
D. L.
, and
Liu
,
S.
,
1991
, “
Fundamental Prediction of Steel Weld Metal Properties
,”
ASME J. Offshore Mech. Arct. Eng.
,
113
(
4
), pp.
327
333
.10.1115/1.2919938
3.
Murugan
,
S.
,
Kumar
,
P. V.
,
Raj
,
B.
, and
Bose
,
M. S. C.
,
1998
, “
Temperature Distribution During Multipass Welding of Plates
,”
Int. J. Pressure Vessels Piping
,
75
(
12
), pp.
891
905
.10.1016/S0308-0161(98)00094-5
4.
Bruce
,
W. A.
,
2002
, “
Qualification of Procedures for Welding Onto In-Service Pipelines
,”
ASME
Paper No. IPC2002-27131.10.1115/IPC2002-27131
5.
Yurioka
,
N.
, and
Kasuya
,
T.
,
1995
, “
A Chart Method to Determine Necessary Preheat Temperature in Steel Welding
,”
Q. J. Jpn. Weld. Soc.
,
13
(
3
), pp.
347
357
.10.2207/qjjws.13.347
6.
Sowards
,
J. W.
,
Lippold
,
J. C.
,
Dickinson
,
D. W.
, and
Ramirez
,
A. J.
,
2008
, “
Characterization of Welding Fume From SMAW Electrodes—Part I
,”
Weld. J. - N. Y.
,
87
(
4
), pp.
106 s
112 s
.https://app.aws.org/wj/supplement/WJ_2008_04_s106.pdf
7.
Panwala
,
M. S. M.
,
Channiwala
,
S. A.
, and
Srinivasan
,
K. N.
,
2009
, “
Numerical Simulation of Transient Temperature in SMAW
,”
ASME
Paper No. PVP2009-77449.10.1115/PVP2009-77449
8.
de Souza
,
G. J. S.
,
Alves
,
A. D. N. S.
,
Dalpiaz
,
G.
,
Casanova
,
J.
, and
Brandi
,
S. D.
,
2021
, “
A Comparison Between Air and In-Service Welding on Oxygen Concentration and Microinclusions in E7018-1 Weld Metal
,”
ASME J. Pressure Vessel Technol.
,
143
(
5
), p.
051505
.10.1115/1.4050221
9.
Tung
,
P. C.
,
Wu
,
M. C.
, and
Hwang
,
Y. R.
,
2004
, “
An Image-Guided Mobile Robotic Welding System for SMAW Repair Processes
,”
Int. J. Mach. Tools Manuf.
,
44
(
11
), pp.
1223
1233
.10.1016/j.ijmachtools.2004.03.006
10.
Brandi
,
S.
,
Taniguchi
,
C.
, and
Liu
,
S.
,
1991
, “
Analysis of Meal Transfer in Shielded Metal Arc Welding
,”
Weld. J.
,
70
, pp.
261 s
270 s
.https://www.semanticscholar.org/paper/Analysis-of-meal-transfer-in-shielded-metal-arc-Brandi-Taniguchi/4002e3c9dc0925a85afbe396ed51b4b94b4145f1
11.
Alman
,
D. E.
,
Hawk
,
J. A.
,
Tylczak
,
J. H.
,
Doğan
,
C. P.
, and
Wilson
,
R. D.
,
2001
, “
Wear of Iron–Aluminide Intermetallic-Based Alloys and Composites by Hard Particles
,”
Wear
,
251
(
1–12
), pp.
875
884
.10.1016/S0043-1648(01)00745-1
12.
Khvan
,
A.
,
Hallstedt
,
B.
, and
Broeckmann
,
C.
,
2014
, “
A Thermodynamic Evaluation of the Fe–Cr–C System
,”
CALPHAD: Comput. Coupling Phase Diagrams Thermochem.
,
46
, pp.
24
33
.10.1016/j.calphad.2014.01.002
13.
Yüksel
,
N.
, and
Şahin
,
S.
,
2014
, “
Wear Behavior–Hardness–Microstructure Relation of Fe–Cr–C and Fe–Cr–C–B Based Hardfacing Alloys
,”
Mater. Des.
,
58
, pp.
491
498
.10.1016/j.matdes.2014.02.032
14.
Veinthal
,
R.
,
Sergejev
,
F.
,
Zikin
,
A.
,
Tarbe
,
R.
, and
Hornung
,
J.
,
2013
, “
Abrasive Impact Wear and Surface Fatigue Wear Behaviour of Fe–Cr–C PTA Overlays
,”
Wear
,
301
, pp.
102
108
.10.1016/j.wear.2013.01.077
15.
Wei
,
J.
, and
Cui
,
G.
,
2015
, “
Friction and Wear Behavior of Fe–Cr–B Alloys in Liquid Paraffin Oil
,”
ASME J. Tribol.
,
137
(
3
), p.
031603
.10.1115/1.4029844
16.
Cui
,
G.
, and
Kou
,
Z.
,
2014
, “
The Effect of Boron on Mechanical Behavior and Microstructure for Fe–Cr Matrix Alloy Prepared by P/M
,”
J. Alloys Compd.
,
586
, pp.
699
702
.10.1016/j.jallcom.2013.10.110
17.
Kim
,
H. J.
,
Yoon
,
B. H.
, and
Lee
,
C. H.
,
2001
, “
Wear Performance of the Fe-Based Alloy Coatings Produced by Plasma Transferred Arc Weld-Surfacing Process
,”
Wear
,
249
(
10–11
), pp.
846
852
.10.1016/S0043-1648(01)00683-4
18.
Huang
,
X.
,
2014
, “
Wide Gap Brazing of IN 738 With Boron Free Ni-Co-Zr-Hf-Cr-Ti-Al Braze Alloy
,”
ASME
Paper No. GT2014-25025.10.1115/GT2014-25025
19.
Verástegui
,
R. N.
,
Spohr
,
J. R. F.
,
Lisboa
,
C. P.
, and
Lermen
,
R. T.
,
2021
, “
Capacitive Welding of SAE 10B22 Steel With SAE 1045, DOMEX 700MC and DOCOL DP 1000 Steels
,”
Soldagem Inspeção
,
26
, pp.
1
15
.https://www.scienceopen.com/document?vid=5a15412e-2a80-41f2-88f3-eb7b2d22fb12
20.
Deva
,
A.
,
De
,
S. K.
,
Kumar
,
V.
,
Deepa
,
M.
, and
Jha
,
B. K.
,
2013
, “
Influence of Boron on the Hardenability of Unalloyed and Low Alloyed Steel
,”
Int. J. Metall. Eng.
,
2
(
1
), pp.
47
51
.10.5923/j.ijmee.20130201.07
21.
Tsuji
,
N.
,
Matsubara
,
Y.
,
Sakai
,
T.
, and
Saito
,
Y.
,
1997
, “
Effect of Boron Addition on the Microstructure of Hot-Deformed Ti-Added Interstitial Free Steel
,”
ISIJ Int.
,
37
(
8
), pp.
797
806
.10.2355/isijinternational.37.797
22.
Cao
,
R.
,
Sun
,
J. H.
,
Chen
,
J. H.
, and
Wang
,
P. C.
,
2014
, “
Cold Metal Transfer Joining of Aluminum AA6061-T6-to-Galvanized Boron Steel
,”
ASME J. Manuf. Sci. Eng.
,
136
(
5
), p.
051015
.10.1115/1.4028012
23.
Oh
,
D. W.
,
Olson
,
D. L.
, and
Frost
,
R. H.
,
1994
, “
The Influence of Zirconium and Boron on Low Carbon Steel Weld Metal Microstructure
,”
ASME J. Eng. Ind.
,
116
(
1
), pp.
26
31
.10.1115/1.2901806
24.
Deva
,
A.
, and
Kumar
,
J. B.
,
2018
, “
Heat Treating of Boron Steels
,”
Heat Treat. Irons Steels
,
4
D, pp.
179
187
.10.31399/asm.hb.v04d.a0005963
25.
Wang
,
Y. Y.
, and
Rapp
,
S.
,
2004
, “
Weldability of High Strength and Enhanced Hardenability Steels
,”
ASME
Paper No. IPC2004-0526.10.1115/IPC2004-0526
26.
Casanova
,
J.
,
Rocha
,
D.
, and
Brandi
,
S. D.
,
2013
, “
A Brief History Review of Development on API Steels Welding for Pipeline
,”
Soldagem Inspeção
,
18
(
2
), pp.
176
195
.10.1590/S0104-92242013000200011
27.
Kasuya
,
T.
, and
Yurioka
,
N.
,
1993
, “
Carbon Equivalent and Multiplying Factor for Hardenability of Steel
,”
Weld. J. - N. Y.
,
72
, pp.
263 s
268 s
.https://app.aws.org/wj/supplement/WJ_1993_06_s263.pdf
28.
Xu
,
W. W.
,
Wang
,
Q. F.
,
Pan
,
T.
,
Su
,
H.
, and
Yang
,
C. F.
,
2007
, “
Effect of Welding Heat Input on Simulated HAZ Microstructure and Toughness of a V-N Microalloyed Steel
,”
J. Iron Steel Res. Int.
,
14
(
5
), pp.
234
239
.10.1016/S1006-706X(08)60085-0
29.
Tronskar
,
J. P.
,
1995
, “
Evaluation of Methods to Predict Safe Welding Conditions and Maximum HAZ Hardness in Steel Welding
,”
ASME J. Offshore Mech. Arct. Eng.
,
117
(
1
), pp.
46
56
.10.1115/1.2826990
30.
Chen
,
L. W.
,
Chen
,
Y. H.
, and
Hsu
,
Y. C.
,
2017
, “
A Tailored Tempering Process for CSC-15B22 Steel Sheet
,”
ASME J. Manuf. Sci. Eng.
,
140
(
2
), p.
024501
.10.1115/1.4038370
31.
Jiang
,
W.
, and
Yahiaoui
,
K.
,
2010
, “
Influence of Cooling Rate on Predicted Weld Residual Stress Buildup in a Thick-Walled Piping Intersection
,”
ASME J. Pressure Vessel Technol.
,
132
(
2
), p.
021205
.10.1115/1.4000634
32.
Rybicki
,
E. F.
, and
McGuire
,
P. A.
,
1982
, “
The Effects of Induction Heating Conditions on Controlling Residual Stresses in Welded Pipes
,”
ASME J. Eng. Mater. Technol.
,
104
(
4
), pp.
267
273
.10.1115/1.3225075
33.
Ferreira
,
D. M. B.
,
Alves
,
A. D. N. S.
,
Cruz Neto
,
R. M. D. A.
,
Martins
,
T. F.
, and
Brandi
,
S. D.
,
2018
, “
A New Approach to Simulate HSLA Steel Multipass Welding Through Distributed Point Heat Sources Model
,”
Metals
,
8
(
11
), p.
951
.10.3390/met8110951
34.
ASTM Committee E20 on Temperature Measurement
,
1993
,
Manual on the Use of Thermocouples in Temperature Measurement
, 4th ed.,
ASTM International
,
Philadelphia, PA
.
35.
Gao
,
K.
,
Qin
,
X.
,
Wang
,
Z.
,
Chen
,
H.
,
Zhu
,
S.
,
Liu
,
Y.
, and
Song
,
Y.
,
2014
, “
Numerical and Experimental Analysis of 3D Spot Induction Hardening of AISI 1045 Steel
,”
J. Mater. Process. Technol.
,
214
(
11
), pp.
2425
2433
.10.1016/j.jmatprotec.2014.05.010
36.
Nikravesh
,
M.
,
Naderi
,
M.
,
Akbari
,
G. H.
, and
Bleck
,
W.
,
2015
, “
Phase Transformations in a Simulated Hot Stamping Process of the Boron Bearing Steel
,”
Mater. Des.
,
84
, pp.
18
24
.10.1016/j.matdes.2015.06.108
You do not currently have access to this content.