Abstract

From previous combustion oscillation experiments using a simulated gas turbine combustor, oscillation frequencies around 350 Hz were measured in only natural gas-fired, and around 200 and 400 Hz were measured in the case of hydrogen-containing fuel. In this study, the axial gas column vibration mode was assumed, and the method to reproduce the change of oscillating frequency due to the difference of fuel was investigated. In the previous study, the temperature distribution in the combustor was divided into only two regions, and there were problems in terms of parameter estimation for modeling the flame dynamics. Therefore, the transfer matric method that incorporates a linear temperature gradient was employed. Also, the temperature distributions obtained from computational fluid dynamics, and experiments were reduced to one dimension to reproduce the difference in combustion characteristics due to the difference in fuel composition; four methods were proposed, the axial representative temperatures. The Nyquist plot method was used to calculate up to 10 combinations of resonant frequency and growth rate simultaneously. Furthermore, the oscillation frequency was determined in which the resonance frequency with the growth rate was maximum. As a result, the value of the oscillating frequency obtained differed depending on creating the representative temperature distribution.

References

1.
Nose
,
M.
,
Kawakami
,
T.
,
Araki
,
H.
,
Senba
,
N.
, and
Tanimura
,
S.
,
2018
, “
Hydrogen-Fired Gas Turbine Targeting Realization of CO2-Free Society
,”
Mitsubishi Heavy Ind. Tech. Rev.
,
55
(
4
), pp.
1
7
.https://www.mhi.co.jp/technology/review/en/abstracte-55-4-180.html
2.
Mohammad
,
B.
,
McManus
,
S.
, and
Brand
,
K. A.
,
2020
, “
Hydrogen Enrichment Impact on Gas Turbine Combustion Characteristics
,”
ASME
Paper No. GT2020-15294.10.1115/GT2020-15294
3.
Taamallah
,
S.
,
Vogiatzaki
,
K.
,
Alzahrani
,
F. M.
,
Mokheimer
,
E. M. A.
,
Habib
,
M. A.
, and
Ghoniem
,
A. F.
,
2015
, “
Fuel Flexibility, Stability and Emissions in Premixed Hydrogen-Rich Gas Turbine Combustion: Technology, Fundamentals, and Numerical Simulations
,”
Appl. Energy
,
154
, pp.
1020
1047
.10.1016/j.apenergy.2015.04.044
4.
Lieuwen
,
T. C.
, and
Yang
,
V.
, eds.,
2005
, “
Combustion Instabilities in Gas Turbine Engines
,” Vol. 210, Progress in Astronaustics and Aeronautics, AIAA, Reston, VA
.
5.
Candel
,
S.
,
Durox
,
D.
,
Schuller
,
T.
,
Bourgouin
,
J.-F.
, and
Moeck
,
J. P.
,
2014
, “
Dynamics of Swirling Flames
,”
Annu. Rev. Fluid Mech.
,
46
(
1
), pp.
147
173
.10.1146/annurev-fluid-010313-141300
6.
Polifke
,
W.
,
2020
, “
Modeling and Analysis of premixed flame Dynamics by Means of Distributed Time Delays
,”
Prog. Energy Combust. Sci.
,
79
, p.
100845
.10.1016/j.pecs.2020.100845
7.
Nakamura
,
T.
,
Kaneko
,
S.
,
Inada
,
F.
,
Kato
,
M.
,
Ishihara
,
K.
,
Nishihara
,
T.
,
Mureithi
,
N. W.
, and
Langthjem
,
M. A.
(eds.),
2013
,
Flow-Induced Vibrations: Classifications and Lessons From Practical Experiences
,
Elsevier
, London, UK.
8.
Lieuwen
,
T.
,
McDonell
,
V.
,
Petersen
,
E.
, and
Santavicca
,
D.
,
2006
, “
Fuel Flexibility Influences on Premixed Combustor Blowout, Flashback, Autoignition, and Instability
,”
ASME
Paper No. GT2006-90770.10.1115/GT2006-90770
9.
Lee
,
M. C.
,
Seo
,
S. B.
,
Chung
,
J. H.
,
Kim
,
S. M.
,
Joo
,
Y. J.
, and
Ahn
,
D. H.
,
2010
, “
Gas Turbine Combustion Performance Test of Hydrogen and Carbon Monoxide Synthetic Gas
,”
17th Int. Symp. Alcohol Fuels
,
89
(
7
), pp.
1485
1491
.10.1016/j.fuel.2009.10.004
10.
Lam
,
K.-K.
, and
Parsania
,
N.
,
2016
, “
Hydrogen Enriched Combustion Testing of Siemens SGT-400 at High Pressure Conditions
,”
ASME
Paper No. GT2016-57470.10.1115/GT2016-57470
11.
Yoon
,
J.
,
Lee
,
M.-C.
,
Joo
,
S.
,
Kim
,
J.
, and
Yoon
,
Y.
,
2015
, “
Instability Mode and Flame Structure Analysis of Various Fuel Compositions in a Model Gas Turbine Combustor
,”
J. Mech. Sci. Technol.
,
29
(
3
), pp.
899
907
.10.1007/s12206-015-0203-1
12.
Yoon
,
J.
,
Joo
,
S.
,
Kim
,
J.
,
Lee
,
M. C.
,
Lee
,
J. G.
, and
Yoon
,
Y.
,
2017
, “
Effects of Convection Time on the High Harmonic Combustion Instability in a Partially Premixed Combustor
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3753
3761
.10.1016/j.proci.2016.06.105
13.
Chterev
,
I.
, and
Boxx
,
I.
,
2021
, “
Effect of Hydrogen Enrichment on the Dynamics of a Lean Technically Premixed Elevated Pressure Flame
,”
Combust. Flame
,
225
, pp.
149
159
.10.1016/j.combustflame.2020.10.033
14.
Indlekofer
,
T.
,
Ahn
,
B.
,
Kwah
,
Y. H.
,
Wiseman
,
S.
,
Mazur
,
M.
,
Dawson
,
J. R.
, and
Worth
,
N. A.
,
2021
, “
The Effect of Hydrogen Addition on the Amplitude and Harmonic Response of Azimuthal Instabilities in a Pressurized Annular Combustor
,”
Combust. Flame
,
228
, pp.
375
387
.10.1016/j.combustflame.2021.02.015
15.
Ghani
,
A.
, and
Polifke
,
W.
,
2021
, “
Control of Intrinsic Thermoacoustic Instabilities Using Hydrogen Fuel
,”
Proc. Combust. Inst.
,
38
(
4
), pp.
6077
6084
.10.1016/j.proci.2020.06.151
16.
Æsøy
,
E.
,
Aguilar
,
J. G.
,
Wiseman
,
S.
,
Bothien
,
M. R.
,
Worth
,
N. A.
, and
Dawson
,
J. R.
,
2020
, “
Scaling and Prediction of Transfer Functions in Lean Premixed H2/CH4-Flames
,”
Combust. Flame
,
215
, pp.
269
282
.10.1016/j.combustflame.2020.01.045
17.
Adachi
,
S.
,
Iwamoto
,
A.
,
Hayashi
,
S.
,
Yamada
,
H.
, and
Kaneko
,
S.
,
2007
, “
Emissions in Combustion of Lean Mixtures of Methane and Biomass Supported by Primary Hot Burned Gas in a Multi Stage Gas Turbine Combustor
,”
Proc. Combust. Inst.
,
31
(
2
), pp.
3131
3138
.10.1016/j.proci.2006.07.239
18.
Hiramitsu
,
M.
,
Hayashi
,
S.
,
Kaneko
,
S.
, and
Yamasaki
,
Y.
,
2007
, “
Combustion Characteristics of Small Size Gas Turbine Combustor Fueled by Biomass Gas Employing Flameless Combustion
,”
ASME
Paper No. GT2007-27636.10.1115/GT2007-27636
19.
Yamasaki
,
Y.
,
Okada
,
Y.
,
Iijima
,
K.
, and
Kaneko
,
S.
,
2009
, “
Operating of Micro Gas Turbine System Employing Two Stage Combustion by Using Biomass Gas
,”
ASME
Pape No. GT2009-59900.10.1115/GT2009-59900
20.
Kaneko
,
S.
,
Hwang
,
H.
,
Yamasaki
,
D.
,
Watanabe
,
T.
, and
Yamasaki
,
Y.
,
2012
, “
Modeling for Combustion Oscillation Experienced in Micro Gas Turbine Combustor Fueled by Biomass Gas
,” Proceedings of 10th International Conference on Flow-Induced Vibration and Flow-Induced Noise (FIV2012),
Dublin, Ireland
, July 3–6, pp.
599
605
.
21.
Machida
,
R.
,
Hwang
,
H.
,
Ono
,
T.
,
Kitamura
,
R.
,
Uemichi
,
A.
, and
Kaneko
,
S.
,
2014
, “
The Research in the Characteristic of Combustion Oscillation in the Combustor of the Micro Gas Turbine
,” Proceedings of Dynamics and Design Conference 2014 (D&D2014),
Tokyo, Japan
, Aug. 26–29, Paper No. U00287.
22.
Uemichi
,
A.
,
Kanetsuki
,
I.
, and
Kaneko
,
S.
,
2017
, “
Combustion Oscillation in Gas Turbine Combustor for Fuel Mixture of Hydrogen and Natural Gas
,”
ASME
Paper No. PVP2017-65692.10.1115/PVP2017-65692
23.
Li
,
J.
, and
Morgans
,
A. S.
,
2017
, “
The One-Dimensional Acoustic Field in a Duct With Arbitrary Mean Axial Temperature Gradient and Mean Flow
,”
J. Sound Vib.
,
400
, pp.
248
269
.10.1016/j.jsv.2017.03.047
24.
Li
,
J.
,
Yang
,
D.
, and
Morgans
,
A. S.
,
2018
, “
The Effect of an Axial Mean Temperature Gradient on Communication Between One-Dimensional Acoustic and Entropy Waves
,”
Int. J. Spray Combust. Dyn.
,
10
(
2
), pp.
131
153
.10.1177/1756827717743910
25.
Schaefer
,
F.
, and
Polifke
,
W.
,
2019
, “
Low-Order Network Model of a Duct With Non-Uniform Cross-Section and Varying Mean Temperature in the Presence of Mean Flow
,”
AIAA
Paper No. AIAA 2019-4376.10.2514/6.2019-4376
26.
Yong
,
K. J.
,
Silva
,
C. F.
, and
Polifke
,
W.
,
2021
, “
A Categorization of Marginally Stable Thermoacoustic Modes Based on Phasor Diagrams
,”
Combust. Flame
,
228
, pp.
236
249
.10.1016/j.combustflame.2021.01.003
27.
Peat
,
K. S.
,
1988
, “
The Transfer Matrix of a Uniform Duct With a Linear Temperature Gradient
,”
J. Sound Vib.
,
123
(
1
), pp.
43
53
.10.1016/S0022-460X(88)80076-2
28.
Polifke
,
W.
,
2004
, Combustion Instabilities, J. Anthoine and A. Hirschberg, eds., Advances in Aeroacoustics and Applications, VKI Lect. Ser., 2004-5, Von Karman Institute, Rhode Saint Genése, Belgium.
29.
Han
,
X.
,
Hui
,
X.
,
Qin
,
H.
,
Lin
,
Y.
,
Zhang
,
M.
, and
Sung
,
C.-J.
,
2016
, “
Effect of the Diffuser on the Inlet Acoustic Boundary in Combustion-Acoustic Coupled Oscillation
,”
ASME
Paper No. GT2016-57046.10.1115/GT2016-57046
30.
Kopitz
,
J.
, and
Polifke
,
W.
,
2008
, “
CFD-Based Application of the Nyquist Criterion to Thermo-Acoustic Instabilities
,”
J. Comput. Phys.
,
227
(
14
), pp.
6754
6778
.10.1016/j.jcp.2008.03.022
31.
Kobayashi
,
Y.
, and
Yamada
,
N.
,
2014
, “
A Unified Analysis of Spontaneous Oscillation Condition for Standing- and Traveling-Wave Thermoacoustic Systems Based on System Representation in Traveling-Wave Pressure Components
,”
Trans. Inst. Syst. Control Inf. Eng.
,
57
, pp.
1946
1951
.10.5687/iscie.28.392
32.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S.
,
Gardiner
,
W. C.
, Jr.
,
Lissaianski
,
V. V.
, and
Qin
,
Z.
, GRI-mech 3.0, Gas Research Institute, accessed June 7, 2021, http://combustion.berkeley.edu/gri-mech/version30/text30.html
33.
Advanced Combustion and Propulsion Lab
, 2021, Model Reduction Software Tools: PRINSTON CHEM-RC, PLOG, Prinston University, Princeton, NJ, accessed June 7, 2021, http://engine.princeton.edu
34.
Sun
,
W.
,
Chen
,
Z.
,
Gou
,
X.
, and
Ju
,
Y.
,
2010
, “
A Path Flux Analysis Method for the Reduction of Detailed Chemical Kinetic Mechanisms
,”
Combust. Flame
,
157
(
7
), pp.
1298
1307
.10.1016/j.combustflame.2010.03.006
35.
Gou
,
X.
,
Sun
,
W.
,
Chen
,
Z.
, and
Ju
,
Y.
,
2010
, “
A Dynamic Multi-Timescale Method for Combustion Modeling with Detailed and Reduced Chemical Kinetic Mechanisms
,”
Combustion and Flame
,
157
(
6
), pp.
1111
1121
.10.1016/j.combustflame.2010.02.020
36.
Langthjem
,
M. A.
, and
Nakano
,
M.
,
2021
, “
On the Acoustic Trapped Modes and Their Symmetry Properties in a Circular Cylindrical Waveguide With a Cavity
,”
J. Eng. Math.
,
128
(
1
), pp.
1
25
.10.1007/s10665-021-10126-2
You do not currently have access to this content.