The aim of this paper is to investigate different factors, including dwell time, strain range, and strain ratio on creep-fatigue endurances in nickel-based Inconel 718 and GH4169 superalloys. We also summarize classic approaches for life assessments based on the generalizations of Coffin–Manson equation, linear damage summation (LDS), and strain-range partitioning (SRP) method. Each approach does have some degree of success in dealing with a specific set of creep–fatigue data. In order to evaluate the prediction capabilities of the validated approaches, a Bayesian information criterion (BIC) allowing for maximum likelihood and principle of parsimony is used to select the best performing model.
Issue Section:
Materials and Fabrication
References
1.
Zhu
, S.-P.
, Yang
, Y.-J.
, Huang
, H.-Z.
, Lv
, Z.
, and Wang
, H.-K.
, 2017
, “A Unified Criterion for Fatigue–Creep Life Prediction of High Temperature Components
,” Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng.
, 231
(4
), pp. 677
–688
.2.
Zhang
, X.-C.
, Tu
, S.-T.
, and Xuan
, F.-Z.
, 2014
, “Creep–Fatigue Endurance of 304 Stainless Steels
,” Theor. Appl. Fract. Mech.
, 71
, pp. 51
–66
.3.
Yan
, X.-L.
, Zhang
, X.-C.
, Tu
, S.-T.
, Mannan
, S.-L.
, Xuan
, F.-Z.
, and Lin
, Y.-C.
, 2015
, “Review of Creep–Fatigue Endurance and Life Prediction of 316 Stainless Steels
,” Int. J. Pressure Vessels Piping
, 126–127
, pp. 17
–28
.4.
Hales
, R.
, 1980
, “A Quantitative Metallographic Assessment of Structural Degradation of Type 316 Stainless Steel During Creep-Fatigue
,” Fatigue Fract. Eng. Mater. Struct.
, 3
(4
), pp. 339
–356
.5.
Zhu
, S.-P.
, Huang
, H.-Z.
, He
, L.-P.
, Liu
, Y.
, and Wang
, Z.
, 2012
, “A Generalized Energy-Based Fatigue–Creep Damage Parameter for Life Prediction of Turbine Disk Alloys
,” Eng. Fract. Mech.
, 90
, pp. 89
–100
.6.
Zhu
, S. P.
, Lei
, Q.
, and Wang
, Q. Y.
, 2017
, “Mean Stress and Ratcheting Corrections in Fatigue Life Prediction of Metals
,” Fatigue Fract. Eng. Mater. Struct.
, 40
(9
), pp. 1343
–1354
.7.
Ghonem
, H.
, and Zheng
, D.
, 1992
, “Frequency Interactions in High-Temperature Fatigue Crack Growth in Superalloys
,” Metall. Trans. A
, 23
(11
), pp. 3067
–3072
.8.
McDowell
, D. L.
, and Miller
, M. P.
, 1981
, “Physically Based Microcrack Propagation Laws for Creep-Fatigue-Environment Interaction
,” ASME Winter Annual Meeting
, Washington, DC, Nov. 15–20, pp. 19
–30
.9.
Wang
, R.-Z.
, Chen
, B.
, Zhang
, X.-C.
, Tu
, S.-T.
, Wang
, J.
, and Zhang
, C.-C.
, 2017
, “The Effects of Inhomogeneous Microstructure and Loading Waveform on Creep-Fatigue Behaviour in a Forged and Precipitation Hardened Nickel-Based Superalloy
,” Int. J. Fatigue
, 97
, pp. 190
–201
.10.
Takahashi
, Y.
, 2008
, “Study on Creep-Fatigue Evaluation Procedures for High Chromium Steels—Part II: Sensitivity to Calculated Deformation
,” Int. J. Pressure Vessels Piping
, 85
(6
), pp. 423
–440
.11.
Fournier
, B.
, Sauzay
, M.
, Caes
, C.
, Noblecourt
, M.
, Mottot
, M.
, Bougault
, A.
, Rabeau
, V.
, and Pineau
, A.
, 2008
, “Creep-Fatigue-Oxidation Interactions in a 9Cr–1Mo Martensitic Steel—Part II: Effect of Compressive Holding Period on Fatigue Lifetime
,” Int. J. Fatigue
, 30
(4
), pp. 663
–676
.12.
Skelton
, R. P.
, 2003
, “Creep-Fatigue Interactions (Crack Initiation)
,” Compr. Struct. Integrity
, 5
, pp. 25
–112
.13.
Kalluri
, S.
, Manson
, S.
, and Halford
, G. R.
, 1987
, “Exposure Time Considerations in High Temperature Low Cycle Fatigue
,” NASA Lewis Research Center, Cleveland, OH, NASA Technical Memorandum TM 88934.14.
Challenger
, K. D.
, Miller
, A. K.
, and Brinkman
, C. R.
, 1981
, “An Explanation for the Effects of Hold Periods on the Elevated Temperature Fatigue Behavior of 2 1/4 Cr–1 Mo Steel
,” ASME J. Eng. Mater. Technol.
, 103
(1
), pp. 7
–14
.15.
François
, D.
, Pineau
, A.
, and Zaoui
, A.
, 2012
, Mechanical Behaviour of Materials: Volume II: Fracture Mechanics and Damage
, Vol. 191, Springer Science & Business Media
, Berlin.16.
Aoto
, K.
, Komine
, R.
, Ueno
, F.
, Kawasaki
, H.
, and Wada
, Y.
, 1994
, “Creep-Fatigue Evaluation of Normalized and Tempered Modified 9Cr-1Mo
,” Nucl. Eng. Des.
, 153
(1
), pp. 97
–110
.17.
Tong
, J.
, Dalby
, S.
, Byrne
, J.
, Henderson
, M.
, and Hardy
, M.
, 2001
, “Creep, Fatigue and Oxidation in Crack Growth in Advanced Nickel Base Superalloys
,” Int. J. Fatigue
, 23
(10
), pp. 897
–902
.18.
Deng
, G.-J.
, Tu
, S.-T.
, Zhang
, X.-C.
, Wang
, Q.-Q.
, and Qin
, C.-H.
, 2015
, “Grain Size Effect on the Small Fatigue Crack Initiation and Growth Mechanisms of Nickel-Based Superalloy GH4169
,” Eng. Fract. Mech.
, 134
, pp. 433
–450
.19.
Leo Prakash
, D. G.
, Walsh
, M. J.
, Maclachlan
, D.
, and Korsunsky
, A. M.
, 2009
, “Crack Growth Micro-Mechanisms in the IN718 Alloy Under the Combined Influence of Fatigue, Creep and Oxidation
,” Int. J. Fatigue
, 31
(11–12
), pp. 1966
–1977
.20.
Bhattacharyya
, A.
, Sastry
, G.
, and Kutumbarao
, V.
, 1997
, “On the Dual Slope Coffin-Manson Relationship During Low Cycle Fatigue of Ni-Base Alloy in 718
,” Scr. Mater.
, 36
(4
), pp. 411
–415
.21.
Andrews
, R. G.
, 1992
, “High Temperature Fatigue Crack Initiation and Propagation Behaviour in Inconel 718 Turbine Discs
,” National Library of Canada
, Gatineau, QC, Canada.22.
Brinkman
, C. R.
, 1985
, “High-Temperature Time-Dependent Fatigue Behaviour of Several Engineering Structural Alloys
,” Int. Met. Rev.
, 30
(1
), pp. 235
–258
.23.
Thakker
, A. B.
, and Cowles
, B. A.
, 1983
, “Low Strain, Long Life Creep Fatigue of AF2-1DA and INCO 718
,” National Aeronautics and Space Administration, Springfield, VA, Technical Report No. NASA CR-167989
.24.
Shahani
, V.
, and Popp
, H. G.
, 1978
, “Evaluation of Cyclic Behavior of Aircraft Turbine Disk Alloys
,” National Aeronautics and Space Administration, Washington, DC, Technical Report No. NASA-CR-159433
.25.
Prasad
, K.
, Sarkar
, R.
, Ghosal
, P.
, and Kumar
, V.
, 2013
, “Simultaneous Creep–Fatigue Damage Accumulation of Forged Turbine Disc of in 718 Superalloy
,” Mater. Sci. Eng. A
, 572
, pp. 1
–7
.26.
Zhang
, X.-C.
, Li
, H.-C.
, Zeng
, X.
, Tu
, S.-T.
, Zhang
, C.-C.
, and Wang
, Q.-Q.
, 2017
, “Fatigue Behavior and Bilinear Coffin-Manson Plots of Ni-Based GH4169 Alloy With Different Volume Fractions of δ Phase
,” Mater. Sci. Eng. A
, 682
, pp. 12
–22
.27.
Wei
, D.-S.
, and Yang
, X.-G.
, 2009
, “Investigation and Modeling of Low Cycle Fatigue Behaviors of Two Ni-Based Superalloys Under Dwell Conditions
,” Int. J. Pressure Vessels Piping
, 86
(9
), pp. 616
–621
.28.
Wang
, R.-Z.
, Zhang
, X.-C.
, Gong
, J.-G.
, Zhu
, X.-M.
, Tu
, S.-T.
, and Zhang
, C.-C.
, 2017
, “Creep-Fatigue Life Prediction and Interaction Diagram in Nickel-Based GH4169 Superalloy at 650 °C Based on Cycle-by-Cycle Concept
,” Int. J. Fatigue
, 97
, pp. 114
–123
.29.
Chen
, G.
, Zhang
, Y.
, Xu
, D. K.
, Lin
, Y. C.
, and Chen
, X.
, 2016
, “Low Cycle Fatigue and Creep-Fatigue Interaction Behavior of Nickel-Base Superalloy GH4169 at Elevated Temperature of 650 °C
,” Mater. Sci. Eng. A
, 655
, pp. 175
–182
.30.
Shang
, D.
, Sun
, G.
, Yan
, C.
, Chen
, J.
, and Cai
, N.
, 2007
, “Creep-Fatigue Life Prediction Under Fully-Reversed Multiaxial Loading at High Temperatures
,” Int. J. Fatigue
, 29
(4
), pp. 705
–712
.31.
Yu
, Z.-Y.
, Zhu
, S.-P.
, Liu
, Q.
, and Liu
, Y.
, 2017
, “A New Energy-Critical Plane Damage Parameter for Multiaxial Fatigue Life Prediction of Turbine Blades
,” Materials
, 10
(5
), p. E513
.32.
Manson
, S. S.
, 1954
, “Behavior of Materials Under Conditions of Thermal Stress
,” National Advisory Committee for Aeronautics, Washington, DC, Technical Report No. NACA-TR-1170
.33.
Ostergren
, W. J.
, 1976
, “A Damage Function and Associated Failure Equations for Predicting Hold Time and Frequency Effects in Elevated Temperature, Low Cycle Fatigue
,” J. Test. Eval.
, 4
(5
), pp. 327
–339
.34.
Halford
, G. R.
, 1991, “Evolution of Creep-Fatigue Life Prediction Models
,” 112th ASME Winter Annual Meeting
, Atlanta, GA, Dec. 1–6, pp. 43
–57
.35.
Coffin
, L. F.
, 1973
, “Fatigue at High Temperature
,” Fatigue at Elevated Temperatures
, ASTM International
, West Conshohocken, PA, Paper No. STP 520.36.
Coffin
, L. F.
, 1969
, “A Generalized Equation for Predicting High-Temperature, Low-Cycle Fatigue, Including Hold Times
,” GE Research and Development Center, Shanghai, China, Report No. AFFDL TR 70-144.37.
Coffin
, L. F.
, 1976
, “Concept of Frequency Separation in Life Prediction for Time-Dependent Fatigue
,” General Electric
, Schenectady, NY
.38.
Robinson
, E. L.
, 1952
, “Effect of Temperature Variation on the Long-Time Rupture Strength of Steels
,” Trans. ASME
, 74
(5
), pp. 777
–781
.39.
Miner
, M. A.
, 1945
, “Cumulative Damage in Fatigue
,” ASME J. Appl. Mech.
, 12
(3
), pp. 159
–164
.40.
Priest
, R. H.
, and Ellison
, E. G.
, 1981
, “A Combined Deformation Map-Ductility Exhaustion Approach to Creep-Fatigue Analysis
,” Mater. Sci. Eng.
, 49
(1
), pp. 7
–17
.41.
Hales
, R.
, 1983
, “A Method of Creep Damage Summation Based on Accumulated Strain for the Assessment of Creep‐Fatigue Endurance
,” Fatigue Fract. Eng. Mater. Struct.
, 6
(2
), pp. 121
–135
.42.
Spindler
, M. W.
, 2005
, “The Prediction of Creep Damage in Type 347 Weld Metal—Part I: The Determination of Material Properties From Creep and Tensile Tests
,” Int. J. Pressure Vessels Piping
, 82
(3
), pp. 175
–184
.43.
Spindler
, M. W.
, and Payten
, W. M.
, 2011
, “Advanced Ductility Exhaustion Methods for the Calculation of Creep Damage During Creep-Fatigue Cycling
,” J. ASTM Int.
, 8
(7
), pp. 1
–19
.44.
Manson
, S. S.
, and Halford
, G. R.
, 2009
, Fatigue and Durability of Metals at High Temperatures
, ASM International
, Materials Park, OH.45.
Manson
, S. S.
, Halford
, G. R.
, and Hirschberg
, M. H.
, 1971
, “Creep-Fatigue Analysis by Strain-Range Partitioning
,” ASME Symposium on Design for Elevated Temp-Environment, San Francisco, CA, May 10–12.46.
He
, J.
, Duan
, Z.
, Ning
, Y.
, and Zhao
, D.
, 1983, “Strain Energy Partitioning and Its Application to GH33A Nickel-Base Superalloy and 1Cr–18Ni–9Ti Stainless Steel
,” ASME International Conference on Advances in Life Prediction Methods, Albany, NY, Apr. 18–20.47.
Wong
, E. H.
, van Driel
, W. D.
, Dasgupta
, A.
, and Pecht
, M.
, 2016
, “Creep Fatigue Models of Solder Joints: A Critical Review
,” Microelectron. Reliab.
, 59
, pp. 1
–12
.48.
Wang
, R.-Z.
, Zhang
, X.-C.
, Tu
, S.-T.
, Zhu
, S.-P.
, and Zhang
, C.-C.
, 2016
, “A Modified Strain Energy Density Exhaustion Model for Creep–Fatigue Life Prediction
,” Int. J. Fatigue
, 90
, pp. 12
–22
.49.
Manson
, S. S.
, 1965
, “Fatigue: A Complex Subject—Some Simple Approximations
,” Exp. Mech.
, 5
(4
), pp. 193
–226
.50.
ASME,
1996
, “ASME and Boiler Pressure Vessel Code Section III, Subsection-NH 2005
,” American Society of Mechanical Engineers, New York.51.
Ainsworth
, R. A.
, 2006
, “R5 Procedures for Assessing Structural Integrity of Components Under Creep and Creep–Fatigue Conditions
,” Int. Mater. Rev.
, 51
(2
), pp. 107
–126
.52.
Halford
, G. R.
, and Saltsman
, J. F.
, 1983
, “Strainrange Partitioning: A Total Strain Range Version
,” NASA Lewis Research Center, Cleveland, OH, Technical Report No. NASA TM-83023
.53.
Takahashi
, Y.
, 2008
, “Study on Creep-Fatigue Evaluation Procedures for High-Chromium Steels—Part I: Test Results and Life Prediction Based on Measured Stress Relaxation
,” Int. J. Pressure Vessels Piping
, 85
(6
), pp. 406
–422
.54.
Takahashi
, Y.
, Dogan
, B.
, and Gandy
, D.
, “Systematic Evaluation of Creep-Fatigue Life Prediction Methods for Various Alloys
,” ASME
Paper No. PVT-11-1141. 55.
Andrieu
, E.
, Molins
, R.
, Ghonem
, H.
, and Pineau
, A.
, 1992
, “Intergranular Crack Tip Oxidation Mechanism in a Nickel-Based Superalloy
,” Mater. Sci. Eng. A
, 154
(1
), pp. 21
–28
.56.
Pineau
, A.
, and Antolovich
, S. D.
, 2009
, “High Temperature Fatigue of Nickel-Base Superalloys—A Review With Special Emphasis on Deformation Modes and Oxidation
,” Eng. Failure Anal.
, 16
(8
), pp. 2668
–2697
.57.
Shankar
, V.
, Valsan
, M.
, Rao
, K. B. S.
, Kannan
, R.
, Mannan
, S. L.
, and Pathak
, S. D.
, 2006
, “Low Cycle Fatigue Behavior and Microstructural Evolution of Modified 9Cr–1Mo Ferritic Steel
,” Mater. Sci. Eng. A
, 437
(2
), pp. 413
–422
.58.
Dyson
, B. F.
, 1976
, “Constraints on Diffusional Cavity Growth Rates
,” Met. Sci.
, 10
(10
), pp. 349
–353
.59.
Skelton
, R. P.
, 2014
, “The Energy Density Exhaustion Method for Assessing the Creep-Fatigue Lives of Specimens and Components
,” Mater. High Temp.
, 30
(3
), pp. 183
–201
.60.
Spera
, D. A.
, 1973
, “Comparison of Experimental and Theoretical Thermal Fatigue Lives for Five Nickel-Base Alloys
,” Fatigue at Elevated Temperatures
, ASTM International
, West Conshohocken, PA, pp. 648–657.61.
Schwarz
, G.
, 1978
, “Estimating the Dimension of a Model
,” Ann. Stat
, 6
(2
), pp. 461
–464
.62.
Biem
, A.
, 2003
, “A Model Selection Criterion for Classification: Application to Hmm Topology Optimization
,” IEEE
Seventh International Conference on Document Analysis and Recognition,
Edinburgh, UK, Aug. 3–6, pp. 104
–108
.Copyright © 2018 by ASME
You do not currently have access to this content.