The dynamic behavior of carbon fiber containment vessels subjected to internal blast loading is studied. The experimental observation of dynamic response of carbon fiber cylindrical shells is presented, in which failure modes of structures are especially concerned. The load-bearing capability and scale effect of carbon fiber cylindrical shells are discussed. Carbon fiber cylindrical shells demonstrate better explosion-resistant performance than that of glass fiber cylindrical shells for the specific types of tests and shell configurations investigated. The current study may contribute to the further understanding on the design and application of carbon fiber containment vessels.

References

1.
Zheng
,
J. Y.
,
Deng
,
G. D.
,
Chen
,
Y. J.
,
Sun
,
G. Y.
,
Hu
,
Y. L.
,
Zhao
,
L. M.
, and
Li
,
Q. M.
,
2006
, “
Experimental Investigation of Discrete Multilayered Vessels Under Internal Explosion
,”
Combust., Explos. Shock Waves
,
42
(
5
), pp.
617
622
.
2.
Clayton
,
A. M.
,
2013
, “
A Simplified Method to Determine Initial Estimates of Peak Strains in Composite Explosive Containment Vessels
,”
ASME
Paper No. PVP2013-97068.
3.
Fedorenko
,
A. G.
,
Syrunin
,
M. A.
, and
Ivanov
,
A. G.
,
2005
, “
Criterion for Selecting Composite Materials for Explosion Containment Structures (Review)
,”
Combust., Explos. Shock Waves
,
41
(
5
), pp.
487
495
.
4.
Tsypkin
,
V. I.
,
Rusak
,
V. N.
,
Shitov
,
A. T.
, and
Ivanov
,
A. G.
,
1981
, “
Deformation and Fracture of Cylindrical Shells Made of Glass-Epoxide Under an Internal Pulse Load
,”
Mech. Compos. Mater.
,
17
(
2
), pp.
169
175
.
5.
Fedorenko
,
A. G.
,
Tsypkin
,
V. I.
,
Ivanov
,
A. G.
,
Rusak
,
V. N.
, and
Zaikin
,
S. N.
,
1983
, “
Peculiarities of the Dynamic Deformation and Fracture of Cylindrical Glass-Fiber Reinforced Plastic Shells Upon Internal Impulse Loading
,”
Mech. Compos. Mater.
,
19
(
1
), pp.
75
79
.
6.
Fedorenko
,
A. G.
,
Tsypkin
,
V. I.
,
Ivanov
,
A. G.
,
Syrunin
,
M. A.
,
Vorontsova
,
O. S.
,
Kleshchevnikov
,
O. A.
, and
Shitov
,
A. T.
,
1987
, “
Deformation and Failure of Different-Scale Cylindrical Glass-Reinforced Plastic Shells in Internal Pulsed Loading
,”
Mech. Compos. Mater.
,
22
(
4
), pp.
463
468
.
7.
Ivanov
,
A. G.
, and
Tsypkin
,
V. I.
,
1987
, “
Deformation and Fracture of Glass-Plastic Shells Under Extreme Shock Loads
,”
Mech. Compos. Mater.
,
23
(
3
), pp.
332
339
.
8.
Fedorenko
,
A. G.
,
Syrunin
,
M. A.
, and
Ivanov
,
A. G.
,
1989
, “
Dynamic Strength of Shells Made of a Glass-Fiber Reinforced Plastic
,”
Mech. Compos. Mater.
,
25
(
3
), pp.
307
312
.
9.
Fedorenko
,
A. G.
,
Syrunin
,
M. A.
, and
Ivanov
,
A. G.
,
1995
, “
Dynamic Strength of Spherical Fiberglass Shells Under Internal Explosive Loading
,”
Combust., Explos. Shock Waves
,
31
(
4
), pp.
486
491
.
10.
Syrunin
,
M. A.
,
Fedorenko
,
A. G.
, and
Ivanov
,
A. G.
,
2002
, “
Reaction and Strength of a Fiberglass Container Under Internal Explosive Loading
,”
Combust., Explos. Shock Waves
,
38
(
3
), pp.
365
373
.
11.
Pastrnak
,
J. W.
,
Henning
,
C. D.
, and
Grundler
,
W.
,
2004
, “
Composite Vessels for Containment of Extreme Blast Loading
,” Lawrence Livermore National Laboratory, Technical Report No. UCRL-CONF-205423.
12.
Dong
,
Q.
,
Li
,
Q. M.
,
Zheng
,
J. Y.
, and
Hu
,
B. Y.
,
2010
, “
Effects of Structural Perturbations on Strain Growth in Containment Vessels
,”
ASME J. Pressure Vessel Technol.
,
132
(
2
), p.
011203
.
13.
Dong
,
Q.
,
Li
,
Q. M.
, and
Zheng
,
J. Y.
,
2008
, “
Investigation on the Mechanisms of Strain Growth in Cylindrical Containment Vessels Subjected to Internal Blast Loading
,”
ASME
Paper No. PVP2008-61016.
You do not currently have access to this content.