Stainless steel clad plate manufactured by explosive bonding is widely used in the chemical industry, but cracks are often initiated in the clad layer. Repair welding is a popular method to repair the cracked zone. But residual stresses are generated inevitably, which can lead to further cracking. How to decrease the residual stress is critical to ensure the structure integrity. This paper studies a method to reduce weld residual stresses by water jet peening (WJP) in 304 stainless steel clad plate. The effect of impact pressure is discussed. A sequential coupling finite element method is developed to simulate the as-welded residual stresses, which is validated by impact indentation measurement. Then, a user subroutine is developed to model the moving load generated by WJP. The results show that the WJP can introduce compressive stresses on the metal surface and thus decrease the as-welded tensile stresses. As the maximum impact pressure at the center of impact (P0) increases, the residual stresses are decreased greatly and even change to compressive stresses. There is a critical value P0, which changes the tensile stresses to compressive stresses. As P0 increases to 1.4 times the yield strength of 304 stainless steel, the initial tensile stresses on the surface have been decreased to compressive stresses.

References

1.
Edwards
,
L.
,
Bouchard
,
P. J.
,
Dutta
,
M.
,
Wang
,
D. Q.
,
Santisteban
,
J. R.
,
Hiller
,
S.
, and
Fitzpatrick
,
M. E.
,
2005
, “
Direct Measurement of the Residual Stresses Near a ‘Boat-Shaped' Repair in a 20 mm Thick Stainless Steel Tube Butt Weld
,”
Int. J. Pressure Vessels Piping
,
82
(
4
), pp.
288
298
.10.1016/j.ijpvp.2004.08.007
2.
Bouchard
,
P. J.
,
2008
, “
Code Characterisation of Weld Residual Stress Levels and the Problem of Innate Scatter
,”
Int. J. Pressure Vessels Piping
,
85
(
3
), pp.
152
165
.10.1016/j.ijpvp.2007.10.013
3.
Yaghi
,
A.
,
Hyde
,
T. H.
,
Becker
,
A. A.
,
Sun
,
W.
, and
Williams
,
J. A.
,
2006
, “
Residual Stress Simulation in Thin and Thick-Walled Stainless Steel Pipe Welds Including Pipe Diameter Effects
,”
Int. J. Pressure Vessels Piping
,
83
(
11
), pp.
864
874
.10.1016/j.ijpvp.2006.08.014
4.
Xu
,
S.
, and
Wang
,
W.
,
2013
, “
Numerical Investigation on Weld Residual Stresses in Tube to Tube Sheet Joint of a Heat Exchanger
,”
Int. J. Pressure Vessels Piping
,
101
, pp.
37
44
.10.1016/j.ijpvp.2012.10.004
5.
Sattari-Far
,
I.
, and
Farahani
,
M. R.
,
2009
, “
Effect of the Weld Groove Shape and Pass Number on Residual Stresses in Butt-Welded Pipes
,”
Int. J. Pressure Vessels Piping
,
86
(
11
), pp.
723
731
.10.1016/j.ijpvp.2009.07.007
6.
Dong
,
P.
,
Hong
,
J. K.
, and
Bouchard
,
P. J.
,
2005
, “
Analysis of Residual Stresses at Weld Repairs
,”
Int. J. Pressure Vessels Piping
,
82
(
4
), pp.
258
269
.10.1016/j.ijpvp.2004.08.004
7.
Mirzaee-Sisan
,
A.
,
Fookes
,
A. J.
,
Truman
,
C. E.
,
Smith
,
D. J.
,
Brown
,
T. B.
, and
Dauda
,
T. A.
,
2007
, “
Residual Stress Measurement in a Repair Welded Header in the As-Weld Condition and After Advanced Post Weld Treatment
,”
Int. J. Pressure Vessels Piping
,
84
(
5
), pp.
265
273
.10.1016/j.ijpvp.2007.01.003
8.
Xu
,
S.
,
Wang
,
W.
, and
Chang
,
Y.
,
2014
, “
Using FEM to Predict Residual Stresses in Girth Welding Joint of Layered Cylindrical Vessels
,”
Int. J. Pressure Vessels Piping
,
119
, pp.
1
7
.10.1016/j.ijpvp.2014.02.002
9.
Van Boven
,
G.
,
Chen
,
W.
, and
Rogge
,
R.
,
2007
, “
The Role of Residual Stress in Neutral pH Stress Corrosion Cracking of Pipeline Steels—Part I: Pitting and Cracking Occurrence
,”
Acta Mater.
,
55
(
1
), pp.
29
42
.10.1016/j.actamat.2006.08.037
10.
Gao
,
Y. K.
, and
Wu
,
X. R.
,
2011
, “
Experimental Investigation and Fatigue Life Prediction for 7475-T7351 Aluminum Alloy With and Without Shot Peening-Induced Residual Stresses
,”
Acta Mater.
,
69
(
9
), pp.
3737
3747
.10.1016/j.actamat.2011.03.013
11.
Zhan
,
K.
,
Jiang
,
C. H.
, and
Ji
,
V.
,
2012
, “
Effect of Prestress State on Surface Layer Characteristic of S30432 Austenitic Stainless Steel in Shot Peening Process
,”
Mater. Des.
,
42
, pp.
89
93
.10.1016/j.matdes.2012.05.053
12.
Xu
,
S.
, and
Zhao
,
Y.
,
2013
, “
Using FEM to Determine the Thermo-Mechanical Stress in Tube to Tube–Sheet Joint for the SCC Failure Analysis
,”
Eng. Failure Anal.
,
34
, pp.
24
34
.10.1016/j.engfailanal.2013.07.011
13.
Segawa
,
T.
,
Sasahara
,
H.
, and
Tsutsumi
,
M.
,
2004
, “
Development of a New Tool to Generate Compressive Residual Stress Within a Machined Surface
,”
Int. J. Mach. Tools Manuf.
,
44
(
11
), pp.
1215
1221
.10.1016/j.ijmachtools.2004.03.010
14.
Schwach
,
D. W.
, and
Guo
,
Y. B.
,
2006
, “
A Fundamental Study on the Impact of Surface Integrity by Hard Turning on Rolling Contact Fatigue
,”
Int. J. Fatigue
,
28
(
12
), pp.
1838
1844
.10.1016/j.ijfatigue.2005.12.002
15.
Mochizuki
,
M.
,
2007
, “
Control of Welding Residual Stress for Ensuring Integrity Against Fatigue and Stress–Corrosion Cracking
,”
Nucl. Eng. Des.
,
237
(
2
), pp.
107
123
.10.1016/j.nucengdes.2006.05.006
16.
Soyama
,
H.
,
Kikuchi
,
T.
,
Nishikawa
,
M.
, and
Takakuwa
,
O.
,
2011
, “
Introduction of Compressive Residual Stress Into Stainless Steel by Employing a Cavitating Jet in Air
,”
Surf. Coat. Technol.
,
205
(
10
), pp.
3167
3174
.10.1016/j.surfcoat.2010.11.031
17.
McDonald
,
E. J.
,
Hallam
,
K. R.
, and
Flewitt
,
P. E. J.
,
2005
, “
A Strategy for Accommodating Residual Stresses in the Assessment of Repair Weldments Based Upon Measurement of Near Surface Stresses
,”
Int. J. Pressure Vessels Piping
,
82
(
4
), pp.
339
346
.10.1016/j.ijpvp.2004.08.011
18.
Gür
,
C. H.
,
2002
, “
Investigation of the Influence of Specimen Geometry on Quench Behaviour of Steels by X-Ray Determination of Surface Residual Stresses
,”
Int. J. Mech. Sci.
,
44
(
7
), pp.
1335
1347
.10.1016/S0020-7403(02)00051-6
19.
Zheng
,
X.
,
Li
,
J.
, and
Zhou
,
Y.
,
2004
, “
X-Ray Diffraction Measurement of Residual Stress in PZT Thin Films Prepared by Pulsed Laser Deposition
,”
Acta Mater.
,
52
(
11
), pp.
3313
3322
.10.1016/j.actamat.2004.02.047
20.
Vikram
,
G.
, and
Babu
,
N. R.
,
2003
, “
An Analytical Model for Prediction of Residual Stress in Water Jet Peening
,”
WJTA American Water Jet Conference
,
Houston, TX
, Paper No. 5-A.
21.
Rajesh
,
N.
, and
Babu
,
N. R.
,
2005
, “
Empirical Modelling of Water-Jet Peening of 6063-T6 Aluminium Alloy
,”
J. Inst. Eng. (India)
,
86
, pp.
22
26
.
22.
Han
,
B.
, and
Ju
,
D. Y.
,
2009
, “
Compressive Residual Stress Induced by Water Cavitation Peening: A Finite Element Analysis
,”
Mater. Des.
,
30
(
8
), pp.
3325
3332
.10.1016/j.matdes.2008.11.029
23.
Rajesh
,
N.
,
Veeraraghavan
,
S.
, and
Babu
,
N. R.
,
2004
, “
A Novel Approach for Modelling of Water Jet Peening
,”
Int. J. Mach. Tools Manuf.
,
44
(
7
), pp.
855
863
.10.1016/j.ijmachtools.2004.01.010
24.
Han
,
B.
,
Ju
,
D. Y.
, and
Yu
,
X. G.
,
2010
, “
Combined Finite Element Method and Dislocation Density Method Solution to Residual Stress Induced by Water Cavitation Peening
,”
Mater. Des.
,
31
(
7
), pp.
3317
3323
.10.1016/j.matdes.2010.02.004
25.
Daniewicz
,
S. R.
, and
Cummings
,
S. D.
,
1999
, “
Characterization of a Water Peening Process
,”
ASME J. Eng. Mater. Technol.
,
121
(
3
), pp.
336
340
.10.1115/1.2812383
26.
Yun
,
L.
, and
Wen Chun
,
J.
,
2013
, “
Finite Element Analysis of Reducing Welding Residual Stress by High Pressure Water Jet Peening
,”
Chin. Pressure Vessel Technol.
,
30
(
11
), pp.
42
46
.
27.
Lin
,
Q.
,
Chen
,
H.
,
Chen
,
J.
, and
Liang
,
Y.
,
2005
, “
Residual Stresses Measurement Using an Indentation Made by an Impact Load
,”
Mater. Sci. Forum
,
490–491
, pp.
196
201
.10.4028/www.scientific.net/MSF.490-491.196
28.
Goldak
,
K.
,
Chakaravarti
,
A.
, and
Bibby
,
M.
,
1984
, “
A New Finite Element Model for Welding Heat Sources
,”
Metall. Mater. Trans. B
,
15
(
2
), pp.
299
305
.10.1007/BF02667333
29.
Lee
,
C.-H.
,
Chang
,
K.-H.
, and
Park
,
J.-U.
,
2013
, “
Three-Dimensional Finite Element Analysis of Residual Stresses in Dissimilar Steel Pipe Welds
,”
Nucl. Eng. Des.
,
256
, pp.
160
168
.10.1016/j.nucengdes.2012.12.016
30.
Jiang
,
W.
,
Xu
,
X. P.
,
Gong
,
J. M.
, and
Tu
,
S. T.
,
2012
, “
Influence of Repair Length on Residual Stress in the Repair Weld of a Clad Plate
,”
Nucl. Eng. Des.
,
246
, pp.
211
219
.10.1016/j.nucengdes.2012.01.021
31.
Macek
,
K.
,
Lukáš
,
P.
,
Janovec
,
J.
,
Mikula
,
P.
,
Strunz
,
P.
,
Vrána
,
M.
, and
Zaffagnini
,
M.
,
1996
, “
Austenite Content and Dislocation Density in Electron-Beam Welds of a Stainless Maraging Steel
,”
Mater. Sci. Eng. A
,
208
(
1
), pp.
131
138
.10.1016/0921-5093(95)10047-4
32.
Liu
,
Q. C.
,
1998
, “
Plastic Strip Model of Cracked Weld Joint With Residual Stresses
,”
Theor. Appl. Fract. Mech.
,
30
(
1
), pp.
51
63
.10.1016/S0167-8442(98)00045-7
33.
Das
,
C. R.
,
Albert
,
S. K.
,
Bhaduri
,
A. K.
,
Srinivasan
,
G.
, and
Murty
,
B. S.
,
2008
, “
Effect of Prior Microstructure on Microstructure and Mechanical Properties of Modified 9Cr-1Mo Steel Weld Joints
,”
Mater. Sci. Eng. A
,
477
(
1–2
), pp.
185
192
.10.1016/j.msea.2007.05.017
You do not currently have access to this content.