This paper considers the determination of plastic instability pressure in toroidal shells under internal uniform pressure. Analytical and numerical approaches, as well as verification by experiments, are presented. This work is inspired by Mellor’s treatment (1983, Engineering Plasticity, Ellis Horwood Ltd., Chichester; 1960, “The Ultimate Strength of Thin-Walled Shells and Circular Diaphragms Subjected to Hydrostatic Pressure,” Int. J. Mech. Sci., 1, pp. 216–228; 1962, “Tensile Instability in Thin-Walled Tubes,” J. Mech. Eng. Sci., 4(3), pp. 251–256), which assumed that plastic instability occurs at the maximum load. A closed-form formula of plastic instability condition is derived analytically. This expression for toroidal shells turns out to be the general case of spherical and cylindrical shells given by Mellor. Then the corresponding pressure is obtained by semi-analytical analysis for a material with the strain hardening characteristic, σ=A(B+ε)n. For the numerical approach, plastic instability pressure is the maximum pressure at which a small pressure increment causes a very large deformation. This is identified by the slope of pressure—change of volume curve approaching zero. Both approaches predict the onset of instability at the inner equator point. Experimental results of two nominally identical stainless steel toroidal shells correlated well to both approaches in terms of the magnitude of pressure and failure location.

1.
Bunkoczy
,
B.
, 1988, “
Methods for Manufacturing a Toroidal Pressure Vessel
,” U.S. Patent No. 4,790,472.
2.
Spence
,
J.
, and
Tooth
,
A. S.
, 1994,
Pressure Vessel Design: Concepts and Principles
,
Chapman & Hall
,
London
.
3.
Hill
,
R.
, 1950, “
A Theory of the Plastic Bulging of a Metal Diaphragm by Lateral Pressure
,”
Philos. Mag.
0031-8086,
7
(
41
), pp.
1133
1142
.
4.
Swift
,
H. W.
, 1952, “
Plastic Instability Under Plane Stress
,”
J. Mech. Phys. Solids
0022-5096,
1
, pp.
1
18
.
5.
Johnson
,
W.
, and
Mellor
,
P. B.
, 1983,
Engineering Plasticity
,
Ellis Horwood Ltd.
,
Chichester
.
6.
Mellor
,
P. B.
, 1960, “
The Ultimate Strength of Thin-Walled Shells and Circular Diaphragms Subjected to Hydrostatic Pressure
,”
Int. J. Mech. Sci.
0020-7403,
1
, pp.
216
228
.
7.
Mellor
,
P. B.
, 1962, “
Tensile Instability in Thin-Walled Tubes
,”
J. Mech. Eng. Sci.
0022-2542,
4
(
3
), pp.
251
256
.
8.
Hillier
,
M. J.
, 1965, “
Tensile Plastic Instability of Thin Tubes
,”
Int. J. Mech. Sci.
0020-7403,
7
, pp.
531
549
.
9.
Hillier
,
M. J.
, 1963, “
Tensile Plastic Instability Under Complex Stress
,”
Int. J. Mech. Sci.
0020-7403,
5
, pp.
57
67
.
10.
Storakers
,
B.
, 1968, “
Plastic and Visco-Plastic Instability of a Thin Tube Under Internal Pressure, Torsion and Axial Tension
,”
Int. J. Mech. Sci.
0020-7403,
10
, pp.
519
529
.
11.
Izotov
,
I. N.
, and
Mityukov
,
A. G.
, 1973, “
Experimental Investigation of the Conditions for Localization of Plastic Strains in Plane and Three-Dimensional Stress State
,”
Strength Mater.
0039-2316,
5
, pp.
1197
1202
.
12.
Updike
,
D. P.
, and
Kalnins
,
A.
, 1994, “
Burst by Tensile Plastic Instability of Vessels With Torispherical Heads
,”
Recertification and Stress Classification Issues
,
Proceedings of the 1994 Pressure Vessels and Piping Conference
,
ASME
,
New York
, Vol.
277
, pp.
89
94
.
13.
Updike
,
D. P.
, and
Kalnins
,
A.
, 1998, “
Tensile Plastic Instability of Axisymmetric Pressure Vessels
,”
ASME J. Pressure Vessel Technol.
0094-9930,
120
(
1
), pp.
6
11
.
14.
Updike
,
D. P.
, and
Kalnins
,
A.
, 1997, “
Ultimate Load Analysis for Design of Pressure Vessels
,”
Pressure Vessel and Piping Codes and Standards
,
Proceedings of the 1997 ASME Pressure Vessels and Piping Conference
,
ASME
,
New York
, Vol.
353
, pp.
289
293
.
15.
Jones
,
D. P.
, and
Holliday
,
J. E.
, 2000, “
Elastic-Plastic Analysis of the PVRC Burst Disk Tests With Comparison to the ASME Code Primary Stress Limits
,”
ASME J. Pressure Vessel Technol.
0094-9930,
122
(
2
), pp.
146
151
.
16.
Jones
,
D. P.
,
Holliday
,
J. E.
, and
Larson
,
L. D.
, 1999, “
Elastic-Plastic Failure Analysis of Pressure Burst Tests of Thin Toroidal Shells
,”
ASME J. Pressure Vessel Technol.
0094-9930,
121
(
2
), pp.
149
153
.
17.
Press
,
W. H.
,
Teukolsky
,
S. A.
,
Vetterling
,
W. T.
, and
Flannery
,
B. P.
, 1992,
Numerical Recipes in Fortran 77: The Art of Scientific Computing
,
Cambridge University
,
Cambridge
.
18.
Zhang
,
Z. L.
,
Hauge
,
M.
,
Odegard
,
J.
, and
Thaulow
,
C.
, 1999, “
Determining Material True Stress-Strain Curve From Tensile Specimens With Rectangular Cross-Section
,”
Int. J. Solids Struct.
0020-7683,
36
(
23
), pp.
3497
3516
.
19.
Ling
,
Y.
, 1996, “
Uniaxial True Stress-Strain After Necking
,”
AMP Journal of Technology
, AMP Incorporated,
5
, pp.
37
48
.
20.
Scheider
,
I.
,
Brocks
,
W.
, and
Cornec
,
A.
, 2004, “
Procedure for the Determination of True Stress-Strain Curves From Tensile Tests With Rectangular Cross-Section Specimens
,”
ASME J. Eng. Mater. Technol.
0094-4289,
126
(
1
), pp.
70
76
.
21.
Bridgeman
,
P. W.
, 1952,
Studies in Large Plastic Flow and Fracture
,
McGraw-Hill
,
New York
.
22.
Han
,
P.
, 1992,
Tensile Testing
,
ASM International
,
Metals Park, OH
.
23.
Vu
,
V. T.
, 2008, “
Burst and Minimum Weight Design of Pressure Vessel Components by Modern Optimisation Techniques
,” Ph.D. thesis, University of Liverpool, Liverpool.
24.
Flugge
,
W.
, 1973,
Stresses in Shells
,
Springer
,
Berlin
.
25.
Lévy
,
M.
, 1871, “
Extrait du mémoire sur les équations générales des mouvements intérieurs des corps solids ductiles au delà des limites où l’élasticité pourrait les ramener à leur premier état
,”
J. Math. Pures Appl.
0021-7824,
16
, pp.
369
372
.
26.
J. E.
,
Marsden
, ed., 1999,
Plasticity: Mathematical Theory & Numerical Analysis
,
Springer-Verlag
,
New York
.
27.
Mises
,
R. V.
, 1913, “
Mechanik der festen Körper im plastisch deformablen Zustand
,”
Gött. Nach. Math. Phys. Kl.
, pp.
582
592
.
28.
MAPLE, 2005, Maplesoft, Wateloo Maple Inc., Ver. 10.00, ON, Canada.
You do not currently have access to this content.