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In this work, CALPHAD-based calculations provided with data for various stable and meta-
stable phases in 2XXX, 6XXX, and 7XXX classes of aluminum-based alloys. These data
were scaled and then used to develop Deep Learning Artificial Neural Network (DLANN)
models for all these phases as a function of composition and temperature. Code was
written in the PYTHON programming language using TensorFlow/Keras libraries. DLANN
models were used for determining the amount of various phases for new compositions
and temperatures. The resulting data were further analyzed through the concept of Self-
organizing Maps (SOM) and a few candidates were chosen for studying the precipitation
kinetics of Al3Sc phase under the framework of CALPHAD approach. This work reports
on heat-treatment simulation for one case of 6XXX alloy where the nucleation site was
on dislocation, while a detailed study for other alloys is reported in a previously published
work. Grain-growth simulations presented in this work are valid for single crystals only.
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1 Introduction
Aluminum is one of the most abundant elements in the Earth’s

crust and has the potential of replacing steel and titanium alloys
in the automotive and aerospace sector due to its superior
strength-to-weight ratio [1]. One of the challenges is to develop alu-
minum alloys than possess superior mechanical properties and
are corrosion resistant at elevated temperatures of about 400 °C.
Aluminum alloy series 2XXX is Al-Cu based, 6XXX is Al-Mg-Si
based, while 7XXX is Al-Mg-Zn based [1]. Initial classifications
of 2XXX, 6XXX, and 7XXX were based on a particular alloying
element as mentioned below [1]. However, these alloys can
contain several alloying elements. The precipitation sequence of
critical phases in these alloys is as follows:

• 2XXX: Supersaturated solid solution transforms to GP-zones
which further transforms into θ′′ followed by θ′ which
finally transforms into a stable θ (Al2Cu) phase. This class
of alloys achieves superior strength when θ′′ and θ′ are pre-
dominant [1].

• 6XXX: Supersaturated solid solution transforms to GP-zones
which further transforms into β′′ followed by β′ which
finally transforms to stable β (Mg2Si) phase. Here, the predom-
inant phase is β′′, which is observed after aging [1].

• 7XXX: Supersaturated solid solution transforms to GP-zones
which further transforms into η′ which finally transforms to
stable η (Mg2Zn) phase. This class of alloys achieves superior
strength when η′ and η are predominant while maximum hard-
ness is achieved when η′ is predominant [1].

In aluminum-based alloys, all the metastable as well as the stable
phases can be present in the microstructure [2,3]. However, in ther-
modynamic calculations, one may not observe any trace of metasta-
ble phases in the presence of a stable phase [3].
Scandium (Sc) improves mechanical strength and corrosion resis-

tance of aluminum alloys, and theAl3Sc phase is thermodynamically
stable [1,4–6]. However, scandium is expensive and it can form a
stable Al3Sc phase up to a saturation limit [1]. Thus, scandium can
be added up to a certain amount, while the above-mentioned meta-
stable phases still are beneficial for achieving superior mechanical
properties in these alloys. Aluminum alloys with scandium addition
may need two-step aging as Al3Sc precipitates during aging at tem-
peratures between 300 °C and 450 °C, while othermetastable phases
precipitate around 200 °C [1]. Research shows [5] that Al3Sc disper-
soids can be helpful in nucleation and stabilization of θ′ phase
precipitates during aging. At the same time, an increase in copper
content has a dual effect on coarsening of Al3Sc precipitates,
as the increase in copper content can lead to both increase and
decrease of coarsening of Al3Sc precipitates [7]. Thus, it is important
to study the effect of composition and temperature on the stability of
stable and metastable phases in aluminum alloys with scandium
addition.
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Aluminum (Al) alloys have been studied under the framework of
the CALPHAD approach [8–11] using Thermo-Calc software
[3,12–14]. The available literature on aluminum alloys studied
through the CALPHAD approach deals with compositions of
known alloys or slight deviations from known compositions [8–
11]. Additionally, the number of elements in these alloys is rela-
tively small and varies between 3 and 8 maximum [8–11].
Thus, the current research problem was framed so that it can

address the current limitations. In the work presented here, alloys
have been considered to have 12 alloying elements for 2XXX, 10
elements for 6XXX, and 11 elements for 7XXX, thus expanding
the number of alloying elements of the current state of the art.
Through the CALPHAD approach, one can only estimate the

stable phases. A phase associated with minimum Gibbs free
energy will be the most stable for a given composition and tempera-
ture regime. Any other phase with a Gibbs free energy higher than
that phase will be unstable or metastable, and its amount cannot be
estimated through equilibrium calculations for that given composi-
tion and temperature regime. In multicomponent systems like the
present case of aluminum alloy, there exist several metastable
phaseswhich are important for improvingmultiplemechanical prop-
erties of that alloy. In order to estimate those metastable phases, one
has to suppress stable phases while performing equilibrium calcula-
tions. They must repeat these calculations multiple times in order to
estimate these metastable phases. Through deep learning artificial
neural network (DLANN), a user can use the data generated
through the CALPHAD approach and develop the DLANN model
for each of these phases. Thereafter, they can estimate all of these
phases for thousands of new compositions in a fraction of a
second, while these calculations may take hours through the
CALPHAD approach.
In the current work, data were generated through the CALPHAD

approach [3,12–14] for various stable and metastable phases for
2XXX, 6XXX, and 7XXX families of alloys to explore the
optimum scandium content that can be beneficial for precipitation
of the Al3Sc phase along with other stable and metastable
phases. These data were then used to develop predictive models
for each of these stable and metastable phases as a function of com-
position and temperature [15]. A computer code was developed in
the PYTHON programming language using TensorFlow [16] and
Keras [17] libraries to develop Deep Learning Artificial Neural
Network (DLANN) models for each of the stable and metastable
phases in 2XXX, 6XXX, and 7XXX classes of aluminum alloys.
These predictive DLANN models were then used to predict
stable and metastable phases for new compositions and tempera-
tures. Thereafter, these data were used and analyzed through Self-
organizing Maps (SOM) [18–20] to determine various patterns
within the dataset as well as for choosing a few candidate alloy
compositions to perform solidification and heat-treatment simula-
tions under the framework of the CALPHAD approach. In the
current work, one case of isothermal heat-treatment simulation
for 6XXX alloy is reported where the nucleation site is at the dis-
locations. Detailed studies of solidification and heat-treatment sim-
ulations have been reported in another publication [15]. Our
research group has expertise in designing alloys’ compositions
for optimal properties by the application of several concepts of arti-
ficial intelligence on data generated through experiments and data
generated under the framework of the CALPHAD approach
[18–24]. This publication is intended to provide researchers with
a predictive tool for screening alloy compositions for phase stabi-
lity prior to performing experiments.

2 Materials and Methods
In this study, 2XXX, 6XXX, and 7XXX classes of aluminum

alloys were chosen. These classes of alloys are heat treatable. For
each class of these alloys, variable bounds for concentrations of
alloying elements were defined based on data available in the liter-
ature [1,4]. These variable bounds for the chemical composition of

alloy series 2XXX, 6XXX, and 7XXX are reported in Table 1. It
can be observed that in 2XXX a total of 12 alloying elements
were considered. In the 7XXX series, the addition of Zr along
with Sc was considered, while dropping V, while for the 6XXX
series alloys both Zr and V were excluded. Equilibrium calculations
were performed to stabilize the metastable phases for these alloys.

2.1 Identification of Stable and Metastable Phases. Com-
mercial software, Thermo-Calc 2018B [12], was used for studying
stability of phases using the thermodynamic database TCAL5 [3]
and mobility database MOBAL4 [14]. Assadiki et al. [25] provided
a brief description of stabilizing metastable phases in aluminum
alloys, which can be useful for studying 2XXX and 6XXX
alloys. As mentioned before, in 2XXX supersaturated solid solution
transforms to GP-zones which further transform into θ′′ followed by
θ′ which finally transforms into a stable θ (Al2Cu) phase. Thermo-
dynamic database TCAL5 [3] and Andersen et al.’s [26] study on
various precipitates in aluminum alloys show that θ′′ closely resem-
bles GPII zones in 2XXX, while θ-Al2Cu is the stable phase. In
6XXX, β′′ closely resembles GPII zones in 2XXX, while
β-Mg2Si is the stable phase [3,26]. For 7XXX, η-MgZn2 is the
stable phase with the C14 structure, while η′ is the metastable
phase [27]. In the thermodynamic database TCAL5 [3],
V_PHASE is considered as MgZn2, while there exists another
phase with C14_LAVES_PHASE in the TCAL5 database. The
structure of the GP-zones or η′ phase has been debated [26]. In
the thermodynamic database TCAL5 [3], Al3Sc exists as the
AL3X phase. CALPHAD approach utilizes Gibbs Energy minimi-
zation as a criterion to determine the formation and stability of any
particular phase [12,25]. In Thermo-Calc [12], it is possible not to
get another metastable phase in 2XXX, 6XXX, and 7XXX,
although it can coexist with the stable phases experimentally [3].

2.2 Generation of Phase Stability Data. The prime target
phase, Al3Sc, is the stable phase. But, in aluminum alloys, superior
properties are achieved by the combination of stable and metastable
phases. For stabilizing metastable phases, one needs to suppress the
stable phases during equilibrium calculations. This way the next
phase becomes stable and its amount (volume fraction and mole
fraction) can be estimated. For example, for the 2XXX series,
1200 sets of compositions and temperature were generated and
amounts (volume fraction) were estimated of the θ (AL2CU_C16)
phase. For these 1200 cases, no metastable phases were observed.
Therefore, the θ (AL2CU_C16) phase was removed from calcula-
tion and generated 1200 sets of compositions and temperature for
which again the amount of θ′ phase was calculated through Thermo-
Calc. This way, a significant amount of data was generated for

Table 1 Minimum and maximum concentrations for each of the
12 alloying elements (wt%) for three series of Al–Sc-based alloys
(also reported in Ref. [15], reprinted with permission
from Elsevier)

Element

2XXX Series 6XXX Series 7XXX Series

Min. Max. Min. Max. Min. Max.

Si 0.20 1.20 0.20 1.80 0.12 0.50
Fe 0.30 0.50 0.10 0.70 0.15 0.50
Cu 3.80 6.80 0.10 0.40 0.10 2.40
Mn 0.20 1.20 0.05 1.10 0.05 0.70
Mg 0.02 1.80 0.35 1.40 0.80 3.70
Cr 0.00 0.10 0.00 0.35 0.00 0.30
Zn 0.10 0.25 0.05 0.25 3.80 8.30
Ti 0.02 0.15 0.00 0.20 0.01 0.20
V 0.00 0.15 0.00 0.00 0.00 0.00
Zr 0.00 0.25 0.00 0.00 0.00 0.20
Sc 0.00 10.00 0.00 10.00 0.00 10.00
Al Balance to

100.00
Balance to
100.00

Balance to
100.00
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stable and metastable phases for 2XXX alloys. The dataset includes
1200 combinations of composition and temperature for each of the
stable and metastable phases. Similarly, a large amount of data was
generated for the 6XXX and 7XXX series of alloys that is suitable
for the application of various concepts of artificial intelligence.

2.3 Data Preprocessing. Data obtained from Thermo-Calc
were not directly used. All these data were scaled. It will be men-
tioned in the main body of the article.

2.4 Deep Learning Artificial Neural Network (DLANN)
Template. This is a multicomponent system with multiple design
variables. Specifically, there are 10–12 alloying elements and tem-
perature as variables in a design process using data generated
through Thermo-Calc and developed predictive models for each
of the stable and metastable phases as a function of the concentra-
tion of alloying elements and temperature. Computer code was
written in the PYTHON programming language using TensorFlow
[16] and Keras [17] libraries for developing DLANN models for
each of these stable and metastable phases as a function of alloying
elements and temperature for 2XXX, 6XXX, and 7XXX alloys.
Prior to model development, data were scaled for all the variables

and objectives such that all values were between 0 and 1. Variables
include composition and temperature of candidate alloys, and
objectives are the amount of stable and metastable phases. There
were several cases for which the equilibrium amount of phase
was 0 (zero). This is a complex dataset where too many points
are missing. A Deep Learning Artificial Neural Network
(DLANN) was then developed which had four hidden layers. The
architecture of the DLANN is something that a user decides. For
example, the first hidden layer consisted of 50 neurons, and the
remaining three layers consisted of 100 neurons each. For each of
the alloying phases studied here, a DLANN was developed where
the initial layer was set as having 50, 60, 70, 80, 90, or 100
neurons, while each of the other three hidden layers consisted of
100, 120, 140, 160, 180, or 200 neurons, respectively.
This dataset was divided randomly into a training set for training

the DLANN model and a testing set for its validation. The testing
set consisted of 33% of all the available data mainly to avoid over-
fitting. Rectified Linear Unit (ReLU) was chosen as the activation
function, while “AdaM” was chosen as an optimizer [16,17].
AdaM stands for Adaptive Moment Estimation. The stopping crite-
rion for training was the number of epochs, and it was fixed at 100
for all of these cases. Mean Squared Error (MSE) and Mean Abso-
lute Error (MAE) over the validation set was one of the performance
metrics considered for choosing a model for various stable and
metastable phases. Tensorboard [28] was used for visualization
and determining/choosing the model that can be used for predictive
tools. Apart from MAE/MSE error metrics and visualization via
Tensorboard, the most important criterion for choosing a model
was the physical metallurgy of aluminum alloys. In this work,
there are lots of missing data points for metastable phases. This
requires giving priority to the physical metallurgy of aluminum
alloys. Thus, concepts of statistics and artificial intelligence are
used as a guiding tool, while avoiding overdependence on these
tools.
As mentioned, Al3Sc is a stable phase, while there are several

stable and metastable phases. Through the CALPHAD approach,
both stable and metastable phases cannot be estimated simulta-
neously for a given composition and temperature. Separate calcula-
tions need to be performed for estimating both stable and metastable
phases. Hence, DLANNmodels were used to estimate the amount of
stable and metastable phases for compositions and temperature in
equilibrium in case any of this information was missing. These esti-
mates were performed for 2XXX, 6XXX, and 7XXX series alloys.
Hence, a more complete dataset was created containing all the
stable and metastable phases in equilibrium for any given chemical
composition and temperature.

2.5 Self-Organizing Maps. Data obtained from DLANN
models for various phases were then analyzed through the
concept of SOM [18–20] for understanding patterns, correlations
among variables, correlations between variables and the number
of critical phases, and correlations among the critical phases.
SOM plots are known for preserving the topology of the dataset.
SOM maps are used to determine complex correlations in large
and small datasets and are known for preserving the topology of
the dataset, though the prediction capability of SOM is not accurate
as each of the hexagonal units on the SOM plots are averaged
[18–20]. In this approach, accurate predictive DLANN models
were developed through the Deep Learning approach. Hence,
SOM analysis was used for analyzing correlations and studying pat-
terns within the dataset.
Through SOM analysis, a set of candidate alloys was selected

based on the optimum amount of stable and metastable phases for
2XXX, 6XXX, and 7XXX alloys. SOM analysis of 6XXX alloys
has been reported in the main paper, while SOM analysis of
2XXX and 7XXX series alloys is reported in Appendix A.

2.6 Solidification and Heat-Treatment Simulations. The
chemical composition of the candidate alloys was used for studying
the precipitation kinetics of the Al3Sc phase, where the nucleation
sites were in the bulk. Most of this work has been reported in
other publications [15]. In the current work, a case for 6XXX
series Al-based alloys is presented where isothermal heat-treatment
simulations were performed at 300 °C and the nucleation sites were
at the dislocations. Interfacial energy between the precipitate
(AL3X) and the matrix (FCC_L12) was optimized for this simula-
tion. It was fixed at 0.07 J/m2. Thermo-Calc module TC-PRISMA
uses Kampmann–Wagner Numerical (KWN) [8] approach for sim-
ulating precipitation kinetics. Governing equations for KWN
approach have been included in Appendix B and the companion
paper [15].

2.7 Computational Infrastructure

2.7.1 CALPHAD-Based Work. Thermo-Calc was installed on a
desktop computer in a computer lab. The operating system was
Windows 10, Core i7 processor (CPU) with 16-GB random access
memory (RAM). Phase transformation calculation time varied
between 20 min and 30 min, depending on the number of alloying
elements considered for an alloy system. As mentioned, 12 elements
were considered for 2XXX alloys, 10 elements for 6XXX, and 11
elements for 7XXX series of Al-based alloys. For heat- treatment
simulation presented in this work, it took about 3 to 4 h. In this
work, heat-treatment simulations for 6XXX alloys were performed
with 10 elements where the nucleation sites were on dislocation.
During this simulation with the nucleation site on dislocation, the
system crashed comparably more often than when performing simu-
lations with nucleation sites in the bulk [15].

2.7.2 Artificial Intelligence-Based Work. Artificial Intelligence
(AI)-based work was performed on a laptop. The operating system
was Windows 10, Core i7 processor (CPU) with 32 GB RAM.
DLANN model development took about 20–30 min depending on
the number of alloying elements. Once the model was developed,
the prediction was done in a few seconds. DLANN models were
also used on an Android phone with 6 GB RAM and octa-core pro-
cessor (CPU). Prediction time was a few seconds on the Android
phone. SOM model development took about 20–30 min for each
case.

3 Results
3.1 DLANN Model. Based on the literature [3,26–29] and the

developed DLANN model, performance metrics for models for
various phases in 2XXX, 6XXX and 7XXX series alloys has
been listed in Table 2.
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The architecture of the DLANN model chosen in this work has
been listed in Table 2. The Mean Absolute Error (MAE) in
Table 2 appears to be large at first glance. As mentioned in Sec.
2.3, data for all the design variables and objectives were scaled
between 0 and 1. DLANN models were developed for all the
stable and metastable phases as a function of composition and tem-
perature. From phase stability data, it could be observed that the
maximum amount (mole fraction) of any of these phases was
numerically low (about 0.1). Mole fraction value for any of these
phases varied between 0 and 0.1.
Regarding the error metrics in Table 2, apart from AL2CU_C16

(θ), mean square errors (MSE) for all the phases are quite low, on
the order of 1e-3 to 1e-5. AL2CU_C16 (θ) and V_PHASE
(η-MgZn2) have a mean absolute error (MAE) of about 0.4. Most
of the MAE values for other phases are around 0.01, while MAE
for AL3X for 7XXX series is extremely small, of the order of
1e-3. MAE of around 0.01 still seems large. However, when
these models will be used as a predictive tool, these results will
be rescaled back to provide a practical estimate of the amount of
all these phases. For example, the initial range (0–0.1) was scaled
to a new range (0–1) for model development. After these models
are used for prediction, these data will be rescaled, or the range
(0–1) will be scaled back to the range (0–0.1). Thus, even if consid-
ering MAE at 0.01, after rescaling it will become 0.001. In a
complex problem with 10–12 alloying elements and a large data-
base with several missing values, an error of 0.001 can be accept-
able, though there is still room for improvement. Again, it should
be recalled that in this work artificial neural network (ANN)
model with four hidden layers was developed through Deep Learn-
ing approach. ANN models are prone to overfitting. Thus, one must
be careful while choosing a model and using it as a predictive tool.
As mentioned before, priority was given to physical metallurgy of
aluminum alloys in selecting DLANNmodels, while using concepts
of statistics and artificial intelligence for guidance. AL2CU_C16 (θ)
data contain lots of missing values, and there are 13 variables:

temperature and concentrations of 12 alloying elements. For
MAE at 0.04, it will be rescaled to 0.004. MAE is about 4%
when compared with the maximum value for AL2CU_C16 (θ),
which is about 0.1. Thus, although MAE and MSE appear large
for a few cases, they are still between 1% and 5% of the
maximum value, which is still quite small for a complex problem
like this.
One can observe that the chosen model has a different structure,

where 50–100–100–100 represents the number of neurons in the
four hidden layers of the DLANN. Based on our experience,
DLANN models with acceptable performance metrics MSE and
MAE, calculated over the validation/testing set, were chosen for
further study. A reader needs to take into account that there were
several cases where the amount of phase is zero, and the alloy
system contains 9–12 alloying elements. From the data sheet,
67% of data were assigned to the training set and 33% of data
were assigned to the testing set, mainly to avoid overfitting.
Hence, there is a possibility to improve the performance metrics
of the models by changing these parameters.

3.2 Self-organizing Maps Analysis. Table 3 summarizes the
error metrics of SOM analysis for 2XXX, 6XXX, and 7XXX
alloys. It can be observed in Table 3, that topological error is
low, while quantization error is comparatively higher. In this
work, predictive models were developed through TensorFlow/
Keras libraries in PYTHON [16,17] with better prediction accuracy
(Table 2). Thus, SOM was used for understanding patterns in the
dataset, while for prediction, the Deep Learning Artificial Neural
Network (DLANN) models were used. As mentioned before, a
commercial software Thermo-Calc was used so that phase stability
calculations were performed within the framework of the
CALPHAD approach.
The CALPHAD approach utilizes Gibbs Energy minimization as

a criterion to determine the formation and stability of any particular
phase [12,25]. In aluminum alloys (2XXX, 6XXX, and 7XXX), tar-
geted properties are achieved by an optimum combination of stable
andmetastable phases. Thermodynamically, thesemetastable phases
will be absent in the presence of stable phases, but kinetically these
metastable phases have been observed in the microstructure of alu-
minum alloys [2,3]. In order to stabilize a metastable phase, one
needs to remove the stable phases while performing calculations
for the stability of metastable phases. In this work, a complex multi-
component system for 2XXX, 6XXX, and 7XXX series alloys was
chosen. It can be possible that a certain metastable phase can be
absent for a certain composition and temperature combination

Table 3 SOM Error metrics for 2XXX, 6XXX, and 7XXX series of
Al–Sc-based alloys

Quantization error Topological error

2XXX 0.126 0.030
6XXX 0.109 0.034
7XXX 0.131 0.017

Table 2 Performance metrics for DLANN models for various phases in 2XXX, 6XXX, and 7XXX
series of Al-based alloys

Alloy Phase
DLANN

Architecture

Error metrics (validation set)

Mean square
error (MSE)

Mean absolute
error (MAE)

2XXX THETA_PRIME (θ′) 90-180-180-180 4.47e-4 0.01535
THETA_DPRIME (θ′′) 60-120-120-120 9.87e-4 0.01972
AL2CU_C16 (θ) 80-160-160-160 0.01086 0.04221
S_PHASE 50-100-100-100 4.24E-4 0.01077
AL3X (Al3Sc) 80-160-160-160 6.69e-4 0.0207

6XXX MG2SI_C1(β) 70-140-140-140 6.63e-4 0.01911
BETA_PRIME (β′) 80-160-160-160 8.32e-4 0.0175
BETA_DPRIME (β′′) 80-160-160-160 1.79e-3 0.01075
AL3X (Al3Sc) 80-160-160-160 6.09e-4 0.01898

7XXX C14_LAVES (η′) 50-100-100-100 6.63e-4 0.01892
T_PHASE 100-200-200-200 1.56e-3 0.01877
V_PHASE (η-MgZn2) 80-160-160-160 8.31e-3 0.04712
S_PHASE 50-100-100-100 1.76e-3 0.01604
AL3X (Al3Sc) 60-120-120-120 2.13e-5 2.9961e-3
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even after the stable phases are removed from the calculation as
several other equilibriums exist in a multicomponent system. Deter-
mining these compositions and temperature regimes can be helpful
in screening alloys prior to performing experiments. Thus, SOM
plots can be used to determine the composition regime prior to per-
forming precipitation kinetics simulations for the Al3Sc phase or
experiments.

3.3. 6XXX Alloys. Figure 1 shows the component plot for
6XXX alloys. In Fig. 1, one can observe that elements Al, Sc,
and the phase AL3X are clustered together or are correlated. This
relation can be established as an increase in Al and Sc will lead
to an increase in AL3X (Al3Sc) phase. In Fig. 1, MG2SI_C1 (β)
and BETA_PRIME (β′) phases are clustered together. From the
physical metallurgy of aluminum alloys, one can establish this rela-
tion as BETA_PRIME (β′) is a metastable phase, which finally
transforms into a stable MG2SI_C1 (β) phase [1].
Figure 2 shows the distribution of Sc, temperature, and a few

critical phases for 6XXX series. SOM maps consist of hexagonal
cells. Values visible on SOM maps are the average value over a
cell. Hexagonal cells are not visible in Fig. 2 since a significantly
large number of candidate alloys are included in this study; thus,
the SOM map looks pixelated.
In Fig. 2, BETA_PRIME (β′) and BETA_DPRIME (β”) exist in

the lower temperature regime (∼180 °C) and is nonexistent at ele-
vated temperature (540 °C). Additionally, MG2SI_C1 (β) phase
exists in a larger amount in a lower temperature regime (∼180 °C).
From the physical metallurgy of aluminum alloys, BETA_PRIME
(β′) and BETA_DPRIME (β′′) are the metastable phases that
finally transform into the thermodynamically stable MG2SI_C1
(β) phase [1]. Additionally, MG2SI_C1 (β), BETA_PRIME (β′),
and BETA_DPRIME (β′′) phases are stable in the temperature

regime around 200 °C and are unstable at elevated temperatures
[1]. SOMmapswere able to recognize this pattern and correctly posi-
tioned the candidate alloys on the vertices of hexagonal units in a
way that the predictions can be verified through concepts of physical
metallurgy. Even though the SOM algorithm does not operate on
principles of physical metallurgy, still it was able to mimic these
vital correlations. This proves the efficacy of the application of
SOM maps in materials design as in this problem the database con-
tains several missing points, which is quite common in materials/
alloy design problems. In Fig. 2, one can additionally observe that
elements aluminum, scandium, and AL3X phase are correlated.
An increase in aluminum and scandium results in an increase in
the AL3X phase, which can be understood as the Al3X phase, in
this case, is Al3Sc.
One of the goals of this work is to determine the scope of working

with small concentrations of Sc since Sc is expensive. From Fig. 2,
it can be observed that it is possible to work with a lower amount
of Sc (<wt. 2%) at lower temperatures since BETA_PRIME,
BETA_DPRIME, and MG2SI_C1 phases are stable. Heat treatment
of aluminum alloys in the case of Sc addition is performed in two
stages. The annealing temperature for precipitating BETA_PRIME,
BETA_DPRIME, and MG2SI_C1 phases is performed at around
100–200 °C, while the annealing temperature for precipitating
AL3X is usually above 300 °C. Thus, SOM maps proved to be
helpful in determining candidates for performing solidification
and heat-treatment simulations. Based on the preceding computa-
tional effort, the most promising Al–Sc-based alloy from each of
the three Al-based series (2XXX, 6XXX, and 7XXX) was selected
for heat-treatment simulation as reported in Table 4. Candidates
reported in Table 4 are also reported in Ref. [15], where simulations
were performed for solidification and heat treatment for studying
the precipitation kinetics of the Al3Sc phase for these candidate
alloys [15]. These compositions were obtained from artificial

Fig. 1 SOM plot of components for alloying elements, and critical phases in 6XXX series of
Al-based alloys along with Sc and temperature
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intelligence-based algorithms. Practically, it is not possible to
achieve similar compositions as shown in Table 4.

3.3.1 Heat-Treatment Simulations. In Ref. [15], simulations
were performed where nucleation sites for precipitation of Al3Sc
phases were in the bulk. In the current work, precipitation kinetics
simulation of the Al3Sc phase was at the nucleation site which is at
the dislocations. A candidate alloy corresponding to the 6XXX
series from Table 4 was used, and isothermal annealing was per-
formed at the dislocations at 300 °C. A system of 10 alloying ele-
ments, and no reported information on interfacial energy for such
a complex system. In this work, the reference temperature was
chosen as 300 °C. In Ref. [15], temperatures were chosen
between 300 °C and 450 °C, where all the nucleation sites were
in the bulk. Figure 3(a) shows the variation of the mean radius of
the grain over the annealing time, which was set at 1000 h.
Figure 3(b) shows the variation of volume fraction over annealing
time. From Figs. 3(a) and 3(b), it can be observed that the mean
radius and volume fraction of Al3Sc crystals increase initially and
saturate at about 67 h. After 67 h, there is minimal change in the
growth of Al3Sc crystals. Interfacial energy was optimized by
trials and in this case, it was set at 0.07 J/m2. For the optimal

grain size of the Al3Sc phase at dislocations, available literature
[1] was consulted. Depending on the application, Al3Sc grain size
can vary from 2 to 100 nm. Strengthening in aluminum alloys is
achieved by precipitation hardening and also mechanical working.
In this work, dislocation density was fixed at 6.0 × 1012 m−3. The
mechanical treatment introduces many dislocations in the system.
Thus, studying the precipitation kinetics of Al3Sc crystals with dis-
locations as a nucleation site will be helpful for researchers working
on aluminum alloys. In Ref. [15], the mean radius of the crystals
increases continuously when the nucleation sites were in the bulk.
In this work, nucleation sites are at the dislocations. A detailed anal-
ysis at other temperatures will be helpful to quantify the effect of
time on overall grain size.

4 Discussion
In this work, the research problem was formulated in a way

which will be helpful in expanding the domain of the current
state of the art or available literature on aluminum alloys studied
under the framework of the CALPHAD approach.
The novelty of this work can be summarized in a few points as

follows:

• Literature on aluminum alloys using the CALPHAD approach
usually focuses on compositions which are around the known
compositions of standard alloys [25]. In this work, a frame-
work was developed to predict and test novel compositions
through a thorough investigation based on the CALPHAD
and Artificial Intelligence. Novel compositions can be ana-
lyzed through DLANN models and the equilibrium amount
of various stable and metastable phases can be estimated in
2XXX, 6XXX, and 7XXX classes of aluminum alloys
through this approach.

• Literature on aluminum alloys using the CALPHAD approach
usually focuses on alloys with 6–8 alloying elements
[4–11,25–29]. In this work, 12 alloying elements were consid-
ered for the 2XXX alloy system, 10 alloying elements for
6XXX, and 11 alloying elements for 7XXX series Al-based
alloys, which will be helpful for researchers to utilize the pre-
sented approach in their own work, providing room for the
addition of new elements in their existing alloys.

Fig. 2 Amount of critical phases (mole) in 6XXX series of Al-based alloys along with Sc (wt%) and temperature (°C)

Table 4 Compositions (wt%) of three series of Al-based alloys
chosen for solidification and heat-treatment simulation in a
previously published work [15] (reprinted with permission
from Elsevier)

Alloying element 2XXX Series 6XXX Series 7XXX Series

Si 0.38828 1.5497 0.28606
Fe 0.3919 0.57313 0.21862
Cu 4.95088 0.27893 1.51113
Mn 0.32005 0.63697 0.36188
Mg 0.53321 1.07076 1.05662
Cr 0.04353 0.1437 0.12353
Zn 0.19235 0.11882 3.73898
Ti 0.04297 0.13088 0.15506
V 0.09389 0.0 0.0
Zr 0.21774 0.0 0.17829
Sc 0.92541 2.60077 0.75953
Al 91.89979 92.89525 91.61031
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• Scandium is added to aluminum alloys along with zirconium
[30,31] and has a profound effect on mechanical properties
in aluminum alloys. Both elements contribute to improvement
in strength, hardness, and stress corrosion resistance. [30,31].
In a previously published work [15], alloys containing Zr
were considered for Scheil solidification simulation and pre-
cipitation kinetic simulation of the Al3Sc phase [15]. The
current work is mainly focused on determining novel compo-
sitions for 2XXX, 6XXX, and 7XXX alloys while determining
the scope of Sc addition. Heat-treatment simulation performed
in this work is for the 6XXX alloy in Table 4, which does not
contain any zirconium. This work cannot be compared with
Refs. [30,31] as Zr containing alloy was not considered for
heat-treatment simulation. A previously published work [15]
can be compared to some extent.

• Solidification and heat-treatment simulations were performed
and have been reported in a previously published work [15].
In the current work, precipitation kinetics simulation results
with the nucleation site at the dislocation have been included.
Isothermal annealing was performed at 300 °C. For the 6XXX
alloy in Table 4, interfacial energy was optimized, and the
value is 0.07 J/m2. From Fig. 3, it can be observed that the
grain growth occurs in the beginning till about 67 h. After
67 h, grain size becomes stable as even up to 1000-h annealing
time there is minimal change in grain size.

Heat-treatment simulations require optimized values of interfa-
cial energy between precipitate and the matrix phase in order to
mimic experimental findings, which is a must from an application
point of view. Thus, our planned future work will focus on optimiz-
ing [20] interfacial energy at various nucleation sites for multicom-
ponent aluminum alloys with scandium addition.

5 Conclusions
This study presents a novel computational approach that can be

utilized for screening candidate alloys prior to performing experi-
ments by estimating the equilibrium amount of various stable and
metastable phases in aluminum alloys containing scandium. In this
work, Deep Learning Artificial Neural Network (DLANN) was
developed by utilizing a database generated for various stable and

metastable phases for aluminum alloys under the framework of the
CALPHAD approach. CALPHAD (Thermo-Calc) databases are
created from actual experiments and atomistic simulations, while
DLANN models were developed under the framework of Tensor-
Flow/ Keras libraries that are known for determining nonlinear and
complex correlations. The presented approach provides predictive
DLANN models that can be used for new chemical compositions
and temperatures to determine stable and metastable phases in the
alloys at the same instant, as experimentally these phases coexist,
but thermodynamically stable and metastable phases cannot
coexist. Thereafter, data predicted through DLANN models were
utilized to study 2XXX, 6XXX and 7XXX series Al–Sc-based
systems and the stable and metastable phases in each of these
systems by utilizing Self-Organizing Maps (SOMs). SOMs are
known for determining complex correlations between design vari-
ables and objectives and also correlations among the objectives.
Models developed through TensorFlow/Keras libraries have low
error and SOM analysis of these alloys also shows low topological
error. Based on this work, a few of the most promising chemical
compositions requiring low concentrations of Sc were developed
for performing heat-treatment simulations.
Solidification and heat-treatment simulations were performed on

candidate alloys listed in Table 4 and had been reported [15]. In the
current work, heat-treatment simulations for 6XXX alloy at 300 °C
were performed where the nucleation sites were at dislocations.
From the results, it can be observed that the average grain size
stabilizes at about 67 h, and there is minimal change in grain size
afterward even when isothermal simulations were performed for
1000 h. In this case, interfacial energy for the Al3Sc phase was opti-
mized. The presented work forms the basis for future work on opti-
mizing interfacial energy for various nucleation sites. Grain-growth
simulations presented in this work are valid for single crystals only.
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Appendix A
2XXX Alloys. Figure 4 shows the component plot for 2XXX

alloys, where all the variables (composition and temperature) and
the objectives (critical phases) are positioned in a way that if any
two or more of them are together, it means that they are correlated.
This information is beneficial for an experimentalist in understand-
ing the correlations between various design variables and objectives
simultaneously. In Fig. 1 and Fig. 4, one can observe that elements
Al, Sc, and the phase AL3X are clustered together or are correlated.
This relation can be established as an increase in Al and Sc will lead
to an increase in AL3X (Al3Sc) phase. In Fig. 4, THETA_PRIME
(θ′) and THETA_DPRIME (θ′′) phases are clustered together.
From the physical metallurgy of aluminum alloys, one can establish
this relation as metastable phase THETA_DPRIME (θ′′) transforms
into another metastable phase THETA_PRIME (θ′), which finally
transforms into stable AL2CU_C16 (θ) phase. It should be men-
tioned that the SOM algorithm has no information on Gibbs
energy minimization, the theory on which these databases predict
a certain phase. Still, the SOM algorithm is able to capture informa-
tion shown in the literature [1]. Alloying elements such as Si, Zr, Zn,
Mn, Fe, Cr, Ti, and V are present in small amounts and are clustered
together on the map. The alloy system under consideration is a
complex multicomponent system, where the metastable phases

were stabilized by suppressing the stable phases. Still, vital informa-
tion on the interaction between components, components and
various phases, and interaction between different phases were
obtained through SOM analysis. Thus, it is possible to utilize
SOM to determine the composition regime where a researcher can
study precipitation kinetics of the Al3Sc phase.
Figure 5 shows the distribution of Sc, temperature, and a few crit-

ical phases for the 2XXX series. From Fig. 5, one can observe that
Sc directly affects the amount of AL3X phase at all temperatures.
Phase AL2CU_C16 is a thermodynamically stable phase, while
THETA_PRIME and THETA_DPRIME metastable phases. In
Fig. 5, THETA_PRIME, THETA_DPRIME, and AL2CU_C16
phases are stable at lower temperatures, which is also reported in
the literature [1]. In Fig. 5, it can be additionally observed that THE-
TA_PRIME and THETA_DPRIME are stable to a certain extent at
moderate temperatures (above 200 °C), while AL2CU_C16 is
absent for this temperature regime. Here, 200 °C is the average tem-
perature of candidate alloys included in those SOM cells. Hexago-
nal cells are not visible since there are too many candidate alloys
included in this study; thus, the SOM map looks pixelated. Any
region on the SOM map that is marked above 200 °C consists of
alloys for which the average temperature is above 200 °C. Heat
treatment for precipitating Al3Sc (AL3X) is performed at 300 °C
or above, while for precipitating THETA_PRIME and THETA_D-
PRIME, heat treatment is performed below 200 °C. Thus, the occur-
rence of a few candidate alloys with a significant amount of
THETA_PRIME and THETA_DPRIME will be helpful in design-
ing new heat-treatment protocols for these classes of alloys. SOM
algorithm proved to be useful in understanding various features/cor-
relations in the dataset that can be validated by concepts of physical
metallurgy of aluminum alloys. This demonstrates the efficacy of
pattern recognition through SOM maps.

7XXX Alloys. Figure 6 shows the component plot for 7XXX
alloys. It can be observed from Fig. 6 that AL3X, Sc, and Al are
adjacent to each other. Thus, SOM plots were able to detect corre-
lations between the concentrations of Al, Sc, and stable phase
AL3X. One can also observe that minor elements like Si, Zr, Mn,
Fe, Cr, and Ti are clustered together on the map. There does not
seem to be any other strong correlations between design variables
and desired phases, as C14_LAVES and V_PHASE are close, but
not close enough to draw any definitive conclusion. Figure 7
shows the distribution of Sc, temperature, and a few critical
phases for 7XXX series. From Fig. 7 it can be observed that Sc
directly affects the amount of AL3X phase at all temperatures.
C14_LAVES, V_PHASE and S_PHASE is stable at a lower
temperature, marked around 170 °C on the SOM map. Above
170 °C, stability decreases for these phases. Here 170 °C is the
average temperature for the candidate alloys included in the hexag-
onal units or cells. Thus, it can be possible that for a number of can-
didate alloys there can be traces of these phases and for a few
candidates these phases can be in a larger or acceptable amount
from a metallurgical point of view. This information will be
helpful in designing new chemical compositions and manufacturing
protocols for these alloys.
Figure 7 shows the distribution of Sc, temperature, and a few crit-

ical phases for the 7XXX series. From Fig. 4 it can be observed that
Sc directly affects the amount of AL3X phase at all temperatures.
C14_LAVES, V_PHASE, and S_PHASE are stable at a lower tem-
perature, marked around 170 °C on the SOM map. Above 170 °C,
stability decreases for these phases. Here, 170 °C is the average
temperature for the candidate alloys included in the hexagonal
units or cells. Thus, it can be possible that for a number of candidate
alloys, there can be traces of these phases and for a few candidates
these phases can be in a larger or acceptable amount from a metal-
lurgical point of view. This information will be helpful in designing
new chemical compositions and manufacturing protocols for these
alloys.

Fig. 4 SOM plot of components for alloying elements, and crit-
ical phases in 2XXX series of Al-based alloys along with Sc and
temperature
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Fig. 5 Amount of critical phases in 2XXX series of Al-based alloys along with Sc and temperature

Fig. 6 SOM plot of components for alloying elements, and critical phases in 7XXX series of
Al-based alloys along with Sc and temperature
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One of the goals for this work was to explore the possibility of Sc
addition in small amounts (<2 wt%). Through this work, it became
possible to find the compositions and temperature regimes for
which Al3Sc (AL3X) and other stable and metastable phases are
stable in significant amounts. Based on the preceding computational
effort, the most promising Al–Sc-based alloy from each of the three
Al-based series was selected for heat-treatment simulation as
reported in Table 4 in the main article and also in a previously pub-
lished work [15].

Appendix B
Kampmann–Wagner Numerical Approach. TC-PRISMA

module [13] in Thermo-Calc [12] utilizes the KWN approach for
simulating precipitation kinetics of a precipitate which involves
nucleation, growth, and coarsening [32–36]. This section explained
the governing equations and lists the parameters used while simulat-
ing precipitation kinetics.
In this work, the matrix is the FCC_L12 phase. The precipitate is

AL3X, which is Thermo-Calc notation for Al3Sc. The molar
volume of the precipitate was taken from the Thermo-Calc data-
base. The grain aspect ratio was fixed at 1.0, while the mobility
enhancement factor was fixed at 5.
An initial number of nucleation sites (N0) were calculated from

dislocation density, which was fixed at 6.0 × 1012/m3. Interfacial
energy was set at 0.07 J/m2.
Time-dependent nucleation rate (Jt) can be derived from classical

nucleation theory [37] and is expressed as in Eq. (B1)

Jt = Js exp
−τ
t

( )
(B1)

In Eq. (B1), τ is incubation time which can be further simplified
as shown in Eq. (B2), t is the time and Js is the steady-state nucle-
ation rate as shown in Eq. (B3) [37–40]

τ =
1

θZ2β∗
(B2)

Js = Zβ∗N0 exp
−ΔG∗

kT

( )
(B3)

In Eqs. (B2) and (B3), Z which stands for Zeldovich factor, β∗ is
the attachment rate of solute atoms to the precipitate (AL3X), N0

denotes the number of nucleation sites available in the beginning,
ΔG∗ is the Gibbs energy of formation of a precipitate, k is Boltz-
mann’s constant, and T is absolute temperature [12,13,32–38]. In
Eq. (B2), θ can vary but in Thermo-Calc it is fixed at 2 [13].
The number density of precipitates, in the beginning, can be

shown as in Eq. (B4), while the number density (Nt) at any
instant of time (t) can be expressed as in Eq. (B5) [13]

N0 exp
−ΔG∗

kT

( )
(B4)

Nt =
∫
Jtdt (B5)

ΔG∗ is the Gibbs energy (or activation energy) of formation of the
precipitate can be expressed as in Eq. (B6).ΔGFCC−Al3Sc

m is the molar
Gibbs energy of formation of Al3Sc nanocrystals from the FCC
matrix and VAl3Sc

m is the molar volume of Al3Sc nanocrystals [34],
while σ is the interfacial energy between the FCC matrix phase
and precipitate Al3Sc phase

ΔG∗=
16π
3

σ3int
ΔGFCC−Al3Sc

m

VAl3Sc
m

( )2 (B6)

Zeldovich factor (Z ) and β∗ can be expressed as shown by
Eqs. (B7) and (B8), respectively [13,39–41]

Z =
VAl3Sc
m

2πNAR∗2

���
σ

kT

√
(B7)

Fig. 7 Amount of critical phases in 7XXX series of Al-based alloys along with Sc and temperature
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β∗=
2πR∗2

(lAl3Sc)4
∑ (XAl3Sc

i − XFCC
i )

2

XFCC
i DFCC

i

⎡
⎣

⎤
⎦

−1

(B8)

In Eq. (B8), XFCC
i and XAl3Sc

i are the equilibrium composition of
element i in the FCC and in the Al3Sc phase respectively, while
DFCC

i is the chemical diffusion coefficient of element i in the FCC
phase [39–42].
For Al3Sc crystals, critical radius (R∗) [30–33] and time-

dependent radius (RAl3Sc
t ) [41,42] can be expressed as in

Eqs. (B9) and (B10), respectively.

R∗=−
2σVAl3Sc

m

ΔGFCC−Al3Sc
m

(B9)

dRAl3Sc
t

dt
=

DFCC
i

ξi,tR
Al3Sc
t

XFCC
i,t − XFCC

i

XAl3Sc
i − XFCC

i

(B10)

In Eq. (B10), XFCC
i,t is the composition of the supersaturated FCC

matrix phase and XAl3Sc
i is the equilibrium composition of the Al3Sc

phase. The growth of Al3Sc crystals is dependent XFCC
i,t . Thus, the

mass balance equation can be expressed as shown in Eq. (B11) [40]

XFCC
i,t = (XFCC

i,0 − VAl3Sc
f XAl3Sc

i )/(1 − VAl3Sc
f ) (B11)

In Eq. (B10), parameter ξi,t can be expressed as in Eq. (B12),
while parameter λi,t in Eq. (B12) can be calculated by solving
Eq. (B13) [40–42]

ξi,t = 1 − λi,tπ exp (λ
2
i,t)erfc(λi,t) =

1

2λ2i,t

XFCC
i,t − XFCC

i

XAl3Sc
i − XFCC

i

(B12)

2λ2i,t − 2λ3i,t
��
π

√
exp(λ2i,t)erfc(λi,t) =

XFCC
i,t − XFCC

i

XAl3Sc
i − XFCC

i

(B13)

Coarsening rate of the precipitate can be predicted from the
growth equation shown in Eq. (B14) [42–44]

dRAl3Sc
t

dt
=

8
27

σVAl3Sc
at

(RAl3Sc)2kT

DFCC
i XFCC

i

XAl3Sc
i − XFCC

i

(B14)

In Eq. (B14), VAl3Sc
at is the mean atomic volume of the Al3Sc

phase, while NA is the Avogadro’s number

VAl3Sc
at =

VAl3Sc
m

NA
(B15)

Time-dependent mean radius and volume fraction of Al3Sc nano-
crystals at any time step can be calculated through Eqs. (B16) and
(B17), respectively [39–42]

RAl3Sc
t =

∑
NtR

Al3Sc
t∑
Nt

(B16)

VAl3Sc
f ,t =

∑
Nt

4π(RAl3Sc
t )

3

3
(B17)

Appendix C
Johnson–Mehl–Avrami–Kolmogorov Analysis. During nucle-

ation and growth, the volume fraction of a precipitate follows the

JMAK equation shown in Eq. (C1) [45]

fv(t) = fv0 1 − exp −
t

tr

( )n( )
(C1)

JMAK analysis for estimating the evolution of the Al3Sc phase
has been analyzed for a better understanding of nucleation and
growth phenomenon. Figure 8 shows the relevant plot for volume
fraction, while Fig. 9 shows the relevant plot for the mean radius.
In Fig. 8, one can observe that a perfect straight line was not

obtained as expected. In Fig. 9, a straight line can be observed.
As mentioned throughout this text, this is a completely new

system. It was studied under the framework of the CALPHAD
approach, where usually 3–6 elements are analyzed at a time.
Thus, some discrepancies are unavoidable. Our group is working
on improving model development within the framework of the
CALPHAD approach and expects to improve the models to their
maturity and use toward experiments.
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