Abstract

In this work, an oscillating water column (OWC) device is considered placed in front of a V-shaped vertical breakwater. The idea conceived, is based on the amplified wave power absorption due to the wave interactions originating from the presence of the breakwater. A theoretical analysis is presented in the realm of linear potential theory, based on the solution of proper diffraction, and radiation problems in the frequency domain, using the eigenfunction expansion method, the method of images, and the multiple scattering approach. Optimum absorption efficiency is examined taking into consideration the characteristics of the power take off (PTO) system and the air compressibility. Numerical results are presented and discussed in terms of the expected power absorption. The effect of the distance between the OWC and the vertical walls, the breakwater’s forming angle, and the wave heading angle, is examined to demonstrate the enhanced absorption ability of the device. It is concluded that the device’s efficiency is strongly dependent on the position of the OWC in front of the walls, as well as the angle of the wave impact, and should be taken into account when determining the optimum device parameters for maximization of its performance.

References

1.
Falcao
,
A. F. O.
,
2010
, “
Wave Energy Utilization: A Review of the Technologies
,”
Renewable Sustainable Energy Rev.
,
14
(
3
), pp.
899
918
.
2.
Santos-Mugica
,
M.
,
Robles
,
E.
,
Endegnanew
,
A.
,
Tedeschi
,
E.
, and
Giebhardt
,
J.
,
2015
, “
Grid Integration and Power Quality Testing of Marine Energy Converters: Research Activities in the MaRINET Project
,”
Proceedings of the 9th International Conference on Ecological Vehicles and Renewable Energies (EVER)
,
Principality of Monaco
,
Mar. 25–27
,
2014
, pp.
1
9
.
3.
Magagna
,
D.
, and
Uihlein
,
A.
,
2015
, “
Ocean Energy Development in Europe: Current Status and Future Perspectives
,”
Int. J. Mar. Energy
,
11
(
9
), pp.
84
104
.
4.
Naty
,
S.
,
Viviano
,
A.
, and
Foti
,
E.
,
2016
, “
Wave Energy Exploitation System Integrated in the Coastal Structure of a Mediterranean Port
,”
Sustainability
,
8
(
12
), p.
1342
.
5.
Mustapa
,
M. A.
,
Yaakob
,
O. B.
,
Ahmed
,
Y. M.
,
Rheem
,
C. K.
,
Koh
,
K. K.
, and
Adnan
,
F. A.
,
2017
, “
Wave Energy Device and Breakwater Integration: A Review
,”
Renewable Sustainable Energy Rev.
,
77
(
C
), pp.
43
58
.
6.
Zhao
,
X. L.
,
Ning
,
D. Z.
,
Zhang
,
C. W.
,
Liu
,
Y. Y.
, and
Kang
,
H. G.
,
2017
, “
Analytical Study on an Oscillating Buoy Wave Energy Converter Integrated Into a Fixed Box-Type Breakwater
,”
Math. Probl. Eng.
,
2017
, p.
3960401
.
7.
Howe
,
D.
, and
Nader
,
J. R.
,
2017
, “
OWC WEC Integrated Within a Breakwater Versus Isolated: Experimental and Numerical Theoretical Study
,”
Int. J. Mar. Energy
,
20
(
12
), pp.
165
182
.
8.
Zhao
,
X. L.
,
Ning
,
D. Z.
, and
Liang
,
D. F.
,
2019
, “
Experimental Investigation on Hydrodynamic Performance of a Breakwater-Integrated WEC System
,”
Ocean Eng.
,
171
(
1
), pp.
25
32
.
9.
Zhang
,
X.
,
Zeng
,
Q.
, and
Liu
,
Z.
,
2019
, “
Hydrodynamic Performance of Rectangular Heaving Buoys for an Integrated Floating Breakwater
,”
J. Mar. Sci. Eng.
,
7
(
8
), p.
239
.
10.
Tay
,
Z. Y.
,
2020
, “
Performance and Wave Impact of an Integrated Multi-raft Wave Energy Converter With Floating Breakwater for Tropical Climate
,”
Ocean Eng.
,
218
(
12
), p.
108136
.
11.
Ning
,
D.
,
Guo
,
B.
,
Wang
,
R.
, and
Lin
,
L.
,
2021
, “
Theoretical Investigation on an Oscillating Buoy WEC-Floating Breakwater Integrated System
,”
IET Renew. Power Gener.
,
15
, pp.
3472
3484
.
12.
Zhao
,
X.
,
Du
,
X.
,
Li
,
M.
, and
Göteman
,
M.
,
2021
, “
Semi-Analytical Study on the Hydrodynamic Performance of an Interconnected Floating Breakwater-WEC System in Presence of the Seawall
,”
Appl. Ocean Res.
,
109
(
4
), p.
102555
.
13.
Ning
,
D.
,
Zhao
,
X.
,
Göteman
,
M.
, and
Kang
,
H.
,
2016
, “
Hydrodynamic Performance of a Pile-Restrained WEC-Type Floating Breakwater: An Experimental Study
,”
Renewable Energy
,
95
(
9
), pp.
531
541
.
14.
Chen
,
Q.
,
Zang
,
J.
,
Zhao
,
X.
, and
Ning
,
D.
,
2018
, “
Numerical Study of the Hydrodynamic Performance of a Pile-Restrained WEC-Type Floating Breakwater
,”
Proceedings of the 33rd International Workshop on Water Waves and Floating Bodies
,
Guidel-Plage, France
,
Apr. 4–7
.
15.
Suvarna
,
P. S.
,
Sathyanarayana
,
A. H.
,
Umesh
,
P.
, and
Shirlal
,
K. G.
,
2020
, “
Laboratory Investigation on Hydraulic Performance of Enlarged Pile Head Breakwater
,”
Ocean Eng.
,
217
(
12
), p.
107989
.
16.
McIver
,
P.
, and
Evans
,
D. V.
,
1988
, “
An Approximate Theory for the Performance of a Number of Wave-Energy Devices Set Into a Reflecting Wall
,”
Appl. Ocean Res.
,
10
(
2
), pp.
58
65
.
17.
Sarkar
,
D.
,
Renzi
,
E.
, and
Dias
,
F.
,
2015
, “
Effect of a Straight Coast on the Hydrodynamics and Performance of the Oscillating Wave Surge Converter
,”
Ocean Eng.
,
105
(
9
), pp.
25
32
.
18.
Michele
,
S.
,
Sammarco
,
P.
, and
d’Errico
,
M.
,
2016
, “
The Optimal Design of a Flap Gate Array in Front of a Straight Vertical Wall: Resonance of the Natural Modes and Enhancement of the Exciting Torque
,”
Ocean Eng.
,
118
(
5
), pp.
152
164
.
19.
Mavrakos
,
S. A.
,
Katsaounis
,
G. M.
,
Nielsen
,
K.
, and
Lemonis
,
G.
,
2004
, “
Numerical Performance Investigation of an Array of Heaving Wave Power Converters in Front of a Vertical Breakwater
,”
Proceedings of the 14th International Offshore and Polar Engineering Conference
,
Toulon, France
,
May 23–28
.
20.
Teng
,
B.
, and
Ning
,
D. Z.
,
2003
, “
Wave Diffraction From a Uniform Cylinder in Front of Vertical Walls
,”
Asian and Pacific Coasts 2003
,
Makuhari, Japan
,
Feb. 29–Mar. 4
, pp.
1
12
.
21.
Teng
,
B.
,
Ning
,
D. Z.
, and
Zhang
X. T.
,
2004
, “
Wave Radiation by a Uniform Cylinder in Front of a Vertical Wall
,”
Ocean Eng.
,
31
(
2
), pp.
201
224
.
22.
Zheng
,
S.
, and
Zhang
,
Y.
,
2015
, “
Wave Diffraction From a Truncated Cylinder in Front of a Vertical Wall
,”
Ocean Eng.
,
104
(
8
), pp.
329
343
.
23.
Zheng
,
S.
, and
Zhang
,
Y.
,
2016
, “
Wave Radiation From a Truncated Cylinder in Front of a Vertical Wall
,”
Ocean Eng.
,
111
(
1
), pp.
602
614
.
24.
Konispoliatis
,
D. N.
, and
Mavrakos
,
S. A.
,
2020
, “
Theoretical Performance Investigation of a Vertical Cylindrical Oscillating Water Column Device in Front of a Vertical Breakwater
,”
J. Ocean Eng. Mar. Energy
,
6
(
1
), pp.
1
13
.
25.
Konispoliatis
,
D. N.
,
2020
, “
Performance of an Array of Oscillating Water Column Devices in Front of a Fixed Vertical Breakwater
,”
J. Mar. Sci. Eng.
,
8
(
11
), p.
912
.
26.
Konispoliatis
,
D. N.
, and
Mavrakos
,
S. A.
,
2020
, “
Wave Power Absorption by Arrays of Wave Energy Converters in Front of a Vertical Breakwater: A Theoretical Study
,”
Energies
,
13
(
8
), p.
1985
.
27.
Konispoliatis
,
D. N.
,
Mavrakos
,
A. S.
, and
Mavrakos
,
S. A.
,
2022
, “
Efficient Properties of Different Types of Wave Energy Converters Placed in Front of a Vertical Breakwater
,”
Int. J. Offshore Polar Eng.
,
32
(
2
), pp.
193
200
.
28.
Ning
,
D.
,
Teng
,
B.
, and
Song
,
X.
,
2005
, “
Analytical Study on Wave Diffraction From a Vertical Circular Cylinder in Front of Orthogonal Vertical Walls
,”
Mar. Sci. Bull.
,
7
(
1
).
29.
Ning
,
D.
, and
Teng
,
B.
,
2003
, “
Study on the Oscillation of a Uniform Cylinder in Front of Two Vertical Walls Intersecting Normally
,”
Chin. Eng. Sci.
,
5
(
5
), pp.
84
91
.
30.
Konispoliatis
,
D. N.
, and
Mavrakos
,
S. A.
,
2021
, “
Hydrodynamic Efficiency of a Wave Energy Converter in Front of an Orthogonal Breakwater
,”
J. Mar. Sci. Eng.
,
9
(
1
), p.
94
.
31.
Konispoliatis
,
D. N.
, and
Mavrakos
,
S. A.
,
2022
, “
Hydrodynamics of a Free-Floating Cylinder in Front of an Orthogonal Vertical Wall
,”
Ship Technol. Res.
,
69
(
2
), pp.
115
127
.
32.
Konispoliatis
,
D. N.
, and
Mavrakos
,
S. A.
,
2021
, “
Diffraction and Radiation of Water Waves by a Heaving Absorber in Front of a Bottom-Mounted, V-Shaped Breakwater of Infinite Length
,”
J. Mar. Sci. Eng.
,
9
(
8
), p.
833
.
33.
Loukogeorgaki
,
E.
, and
Chatjigeorgiou
,
I. K.
,
2019
, “
Hydrodynamic Performance of an Array of Wave Energy Converters in Front of a Vertical Wall
,”
Proceedings of the 13th European Wave and Tidal Energy Conference (EWTEC 2019)
,
Naples, Italy
,
Sept. 1–6
.
34.
Sarmento
,
A. J.
, and
Falcao
,
A. F. O.
,
1985
, “
Wave Generation by an Oscillating Surface-Pressure and Its Application in Wave-Energy Extraction
,”
J. Fluid Mech.
,
150
(
1
), pp.
467
485
.
35.
Konispoliatis
,
D. M.
, and
Mavrakos
,
S. A.
,
2016
, “
Hydrodynamic Analysis of an Array of Interacting Free-Floating Oscillating Water Column (OWC’s) Devices
,”
Ocean Eng.
,
111
(
1
), pp.
179
197
.
36.
Howe
,
D. P.
,
Nader
,
J. R.
, and
MacFarlane
,
G.
,
2018
, “
Experimental Analysis Into the Effects of Air Compressibility in OWC Model Testing
,”
Proceedings of the 4th Asian Wave and Tidal Energy Conference (AWTEC 2018)
,
Taipei, Taiwan
,
Sept. 9–13
.
37.
Mavrakos
,
S. A.
,
1985
, “
User’s Manual for the Software HAMVAB
,”
National Technical University of Athens
.
38.
Yeung
,
R. W.
, and
Sphaier
,
S. H.
,
1989
, “
Wave-Interference Effects on a Truncated Cylinder in a Channel
,”
J. Eng. Math.
,
23
(
2
), pp.
95
117
.
39.
Mavrakos
,
S. A.
, and
Koumoutsakos
,
P.
,
1987
, “
Hydrodynamic Interaction Among Vertical Axisymmetric Bodies Restrained in Waves
,”
Appl. Ocean Res.
,
9
(
3
), pp.
128
140
.
40.
Mavrakos
,
S. A.
,
1991
, “
Hydrodynamic Coefficients for Groups of Interacting Vertical Axisymmetric Bodies
,”
Ocean Eng.
,
18
(
5
), pp.
485
515
.
41.
Mavrakos
,
S. A.
, and
McIver
,
P.
,
1997
, “
Comparison of Methods for Computing Hydrodynamic Characteristics of Arrays of Wave Power Devices
,”
Appl. Ocean Res.
,
19
(
5–6
), pp.
283
291
.
42.
Nader
,
J. R.
,
Zhu
,
S. P.
,
Cooper
,
P.
, and
Stappenbelt
,
B.
,
2012
, “
A Finite-Element Study of the Efficiency of Arrays of Oscillating Water Column Wave Energy Converters
,”
Ocean Eng.
,
43
(
4
), pp.
72
81
.
43.
Evans
,
D. V.
, and
Porter
,
R.
,
1997
, “
Efficient Calculation of Hydrodynamic Properties of OWC Type Devices
,”
ASME J. Offshore Mech. Arct. Eng.
,
119
(
4
), pp.
210
218
.
44.
Nader
,
J. R.
,
2013
, “
Interaction of Ocean Waves With Oscillating Water Column Wave Energy Convertors
,”
Doctor of Philosophy thesis
,
School of Mathematics and Applied Sciences, University of Wollongong
,
Wollongong, Australia
.
45.
Faltinsen
,
O. M.
,
1990
,
Sea Loads on Ships and Offshore Structures
,
Cambridge University Press
,
Cambridge, UK
.
46.
Bardis
,
L.
, and
Mavrakos
,
S. A.
,
1988
, “
User’s Manual for the Computer Code HAQ
,”
National Technical University of Athens.
47.
Garrisson
,
C. J.
,
1974
, “
Hydrodynamics of a Large Objects on the Sea. Part I: Hydrodynamic Analysis
,”
J. Hydronaut.
,
8
(
1
), pp.
5
12
.
48.
Garrisson
,
C. J.
,
1975
, “
Hydrodynamics of a Large Objects on the Sea. Part II: Motion of Free-Floating Bodies
,”
J. Hydronaut.
,
9
(
2
), pp.
58
63
.
You do not currently have access to this content.