Abstract

Wing-in ground effect (WIG) vehicles and planing hulls are exposed to unsteady, high magnitude hydrodynamic forces as their bow enters water. The resulting forces can lead to structural damage and uncomfortable riding conditions. This paper aims to provide deeper understanding on the influence of structural flexibility throughout the water entry process of a hard-chine section. A finite volume method (FVM) based flexible fluid-structure interaction (FFSI) model is used to solve multi-physics. Quantitative comparisons are made between experimental and computational data. Simulations demonstrate that structural responses can attenuate the pressure acting on the body of hard-chine sections impinging water with deadrise angles of 10deg, 20deg, and 30deg. However, they cannot affect that of a section with deadrise angle of 45deg since its pressure distribution pattern is different. It is shown that the impact speed has an important role in hydroelastic response while the sectional Young's modulus affects impact pressures and resulting equivalent stresses. The former increases under the increase of Young's modulus. The latter may increase when the impact speed is low and decreases when the impact speed is high. It is concluded that the results presented may be useful for preliminary design.

References

1.
Abbasov
,
I. B.
, and
Orekhov
,
V. V.
,
2019
, “
Conceptual Model and Interior Design “Water Strider” Ekranoplan
,”
Int. Rev. Mech. Eng.
,
13
(
3
), pp.
162
172
.
2.
Seddon
,
C. M.
, and
Moatamedi
,
M.
,
2006
, “
Review of Water Entry With Applications to Aerospace Structures
,”
Int. J. Impact Eng.
,
32
(
7
), pp.
1045
1067
.
3.
Tavakoli
,
S.
,
Dashtimanesh
,
A.
,
Mancini
,
S.
, and
Mehr
,
J. A.
,
2021
, “
Effects of Vertical Motions on Roll of Planing Hulls
,”
ASME J. Offshore Mech. Arct. Eng.
,
143
(
4
), p.
041401
.
4.
Niazmand Bilandi
,
R.
,
Tavakoli
,
S.
, and
Dashtimanesh
,
A.
,
2021
, “
Seakeeping of Double-Stepped Planing Hulls
,”
Ocean Eng.
,
236
, p.
109475
.
5.
Davis
,
M. R.
, and
Holloway
,
D. S.
,
2003
, “
Motion and Passenger Discomfort on High Speed Catamarans in Oblique Seas
,”
Int. Shipbuild. Prog.
,
50
(
4
), pp.
333
370
.
6.
Shin
,
H.
,
Seo
,
B.
, and
Cho
,
S.
,
2018
, “
Experimental Investigation of Slamming Impact Acted on Flat Bottom Bodies and Cumulative Damage
,”
Int. J. Nav. Archit. Ocean Eng.
,
10
(
3
), pp.
294
306
.
7.
Wang
,
Y.
,
Wu
,
W.
,
Wang
,
S.
, and
Suares
,
C. G.
,
2020
, “
Slam-Induced Loads on a Three-Dimensional Bow With Various Pitch Angles
,”
ASME J. Offshore Mech. Arct. Eng.
,
142
(
1
), p.
014502
.
8.
Von Karman
,
T.
,
1929
,
The Impact of Seaplane Floats During Landing
, NACA TN, 321.
National Advisory Committee for Aeronautics
,
Washington
, October 1929.
9.
Wagner
,
H.
,
1932
, “
Über Stoß- und Gleitvorgänge an der Oberfläche von Flüssigkeiten
,”
ZAMM J. Appl. Math. Mech.
,
12
(
4
), pp.
193
215
.
10.
Oliver
,
J. M.
,
2007
, “
Second-Order Wagner Theory for Two-Dimensional Water-Entry Problems at Small Deadrise Angles
,”
J. Fluid Mech.
,
572
, pp.
59
85
.
11.
Korobkin
,
A. A.
, and
Pukhnachov
,
V. V.
,
1988
, “
Initial Stage of Water Impact
,”
Annu. Rev. Fluid Mech.
,
10
(
1
), pp.
159
185
.
12.
Faltinsen
,
O. M.
,
Kvålsvold
,
J.
, and
Aarsnes
,
J. V.
,
1997
, “
Wave Impact on a Horizontal Elastic Plate
,”
J. Mar. Sci. Technol.
,
2
(
2
), pp.
87
100
.
13.
Sun
,
Z.
,
Korobkin
,
A.
,
Sui
,
X. P.
, and
Zhi
,
Z.
,
2021
, “
A Semi-Analytical Model of Hydroelastic Slamming
,”
J. Fluids Struct.
,
101
, p.
103200
.
14.
Stenius
,
I.
,
Rosén
,
A.
, and
Kuttenkeuler
,
J.
,
2013
, “
Hydroelastic Interaction in Panel-Water Impacts of High-Speed Craft
,”
Ocean Eng.
,
38
(
2–3
), pp.
371
381
.
15.
Shams
,
A.
,
Zhao
,
S.
, and
Porfiri
,
M.
,
2017
, “
Hydroelastic Slamming of Flexible Wedges: Modeling and Experiments From Water Entry to Exit
,”
Phys. Fluids.
,
29
(
3
), p.
037107
.
16.
Jalalisendi
,
M.
, and
Porfiri
,
M.
,
2018
, “
Water Entry of Compliant Slender Bodies: Theory and Experiments
,”
Int. J. Mech. Sci.
,
149
, pp.
514
529
.
17.
Zhang
,
G.
,
Feng
,
S.
,
Zhang
,
Z.
,
Chen
,
Y.
,
Sun
,
Z.
, and
Zong
,
Z.
, “
Investigation of Hydroelasticity in Water Entry of Flexible Wedges With Flow Detachment
,”
Ocean Eng.
,
222
, p.
108580
.
18.
Martins
,
M. M.
,
Bressan
,
J. D.
,
Button
,
S. T.
, and
Ivankovic
,
A.
,
2010
, “
Extrusion Process by Finite Volume Method Using Openfoam Software
,”
AMPT2010: International Conference on Advances in Materials and Processing Technologies
,
Paris, France
,
Oct. 24–27
.
19.
Izadi
,
M.
,
Ghadimi
,
P.
,
Fadavi
,
M.
, and
Tavakoli
,
S.
,
2018
, “
Hydroelastic Analysis of Water Impact of Flexible Asymmetric Wedge With an Oblique Speed
,”
Meccanica
,
53
(
10
), pp.
2585
2617
.
20.
Hosseinzadeh
,
S.
, and
Tabari
,
K.
,
2021
, “
Hydroelastic Effects of Slamming Impact Loads During Free-Fall Water Entry
,”
Sh. Offshore Struct.
,
16
(
sup1
), pp.
68
84
.
21.
Yan
,
D.
,
Mikkola
,
T.
,
Kujala
,
P.
, and
Hirdaris
,
S.
,
2022
, “
Hydroelastic Analysis of Slamming Induced Impact on Stiff and Flexible Structures by Two-Way CFD-FEA Coupling
,”
Sh. Offshore Struct.
, pp.
1
13
.
22.
Piro
,
D.
, and
Maki
,
K. J.
,
2013
, “
Hydroelastic Analysis of Bodies That Enter and Exit Water
,”
J. Fluids Struct.
,
37
, pp.
134
150
.
23.
Lakshmynarayanana
,
P. A. K.
, and
Hirdaris
,
S.
,
2020
, “
Comparison of Nonlinear One- and Two-Way FFSI Methods for the Prediction of the Symmetric Response of a Containership in Waves
,”
Ocean Eng.
,
203
, p.
107179
.
24.
Martin
,
T.
, and
Bihs
,
H.
,
2021
, “
A Non-Linear Implicit Approach for Modelling the Dynamics of Porous Tensile Structures Interacting With Fluids
,”
J. Fluids Struct.
,
100
, p.
103168
.
25.
Cardiff
,
P.
,
Karač
,
A.
,
De Jaeger
,
P.
,
Jasak
,
H.
,
Nagy
,
J.
,
Ivanković
,
A.
, and
Tuković
,
Ž
,
2018
,
An Open-Source Finite Volume Toolbox for Solid Mechanics and Fluid-Solid Interaction Simulations
,” arXiv preprint. https://arxiv.org/abs/1808.10736
26.
Huang
,
L.
,
Ren
,
K.
,
Li
,
M.
,
Tuković
,
Cardiff
,
P.
, and
Thomas
,
G.
,
2019
, “
Fluid-Structure Interaction of a Large Ice Sheet in Waves
,”
Ocean Eng.
,
182
, pp.
102
111
.
27.
Tavakoli
,
S.
,
Huang
,
S.
,
Azhari
,
F.
, and
Babanin
,
A.
,
2021
, “
Viscoelastic Wave–Ice Interactions: A Computational Fluid–Solid Dynamic Approach
,”
J. Mar. Sci. Eng.
,
10
(
9
), p.
1220
.
28.
Martinez-Ferrer
,
P. J.
,
Qian
,
L.
,
Ma
,
Z.
,
Causon
,
D. M.
, and
Mingham
,
C. G.
,
2018
, “
An Efficient Finite-Volume Method to Study the Interaction of Two-Phase Fluid Flows With Elastic Structures
,”
J. Fluids Struct.
,
83
, pp.
54
71
.
29.
Martinez-Ferrer
,
P. J.
,
Causon
,
D. M.
, and
Ma
,
Z.
,
2016
, “
A Multi-region Coupling Scheme for Compressible and Incompressible Flow Solvers for Two-Phase Flow in a Numerical Wave Tank
,”
Comput. Fluids
,
125
, pp.
116
129
.
30.
Liao
,
K.
,
Hu
,
C.
, and
Duan
,
W.
,
2013
, “
Two-Dimensional Numerical Simulation of an Elastic Wedge Water Entry by a Coupled FDM-FEM Method
,”
J. Marine. Sci. Appl.
,
12
(
2
), pp.
163
169
.
31.
Hulin
,
F.
,
Del Buono
,
A.
,
Tassin
,
A.
,
Bernardini
,
G.
, and
Iafrati
,
A.
,
2022
, “
Gravity Effects in Two-Dimensional and Axisymmetric Water Impact Models
,”
J. Fluid Mech.
,
944
(
A9
).
32.
Huang
,
L.
,
Li
,
Y.
,
Benites-Munoz
,
D.
,
Windt
,
C. W.
,
Feichtner
,
A.
,
Tavakoli
,
S.
, and
Davidson
,
J.
,
2022
, “
A Review on the Modelling of Wave-Structure Interactions Based on OpenFOAM
,”
OpenFOAM® J.
,
2
, pp.
116
142
.
33.
Battley
,
M. A.
,
Allen
,
T.
,
Pehrson
,
P.
,
Stenius
,
I.
, and
Rosen
,
A.
,
2009
, “
Effects of Panel Stiffness on Slamming Responses of Composite Hull Panels
,”
17th International Conference on Composite Materials (ICCM-17)
,
Edinburgh, UK
,
July 27–31
.
34.
Zhao
,
Z. R.
, and
Faltinsen
,
F. O.
,
1993
, “
Water Entry of Two-Dimensional Bodies
,”
J. Fluid Mech.
,
246
(
4
), pp.
593
612
.
35.
Jahin
,
U.
,
Kovakovic
,
V.
,
Bogaret
,
H.
, and
van Der Meer
,
D.
,
2022
, “
On Wedge-Slamming Pressures
,”
J. Fluid Mech.
,
934
(
A27
).
You do not currently have access to this content.