Abstract

Accuracy estimation of wave loading on cylinders in a pile group under different impact scenarios is essential for both the structural safety and cost of coastal and offshore structures. Differing from the interaction of waves with a single cylinder, less attention has been paid to pile groups under different arrangements. Numerical simulations of interactions between plunging breaking waves and pile group in finite water depth are performed using the two-phase flow model in REEF3D, an open-source computational fluid dynamics program to investigate the wave loads and flow kinematics characteristics. The Reynolds-averaged Navier–Stokes equation with the two equation k − ω turbulence model is adopted to resolve the numerical wave tank. The model is validated by comparing the numerical wave forces and free surface elevation with measurements from experiments. The computational results show fairly good agreement with experimental data. Four cases are simulated with different relative distances, numbers of cylinders, and arrangements. Results show that the wave forces on cylinders in the pile group are effected by the relative distance between cylinders. The staggered arrangement has a significant influence on the wave forces on the first and second cylinder. The interaction inside a pile group mostly happens between the neighboring cylinders. These interactions are also effected by the relative distance and the numbers of the neighboring cylinders.

References

1.
Morison
,
J.
,
O’brien
,
M.
,
Johnson
,
J.
, and
Schaaf
,
S.
,
1950
, “
The Force Exerted by Surface Waves on Piles
,”
Am. Inst. Min. Metall. Eng.
,
189
(
1
), pp.
147
154
.
2.
Goda
,
Y.
,
Haranaka
,
S.
, and
Kitahata
,
M.
,
1966
, “
Study on Impulsive Breaking Wave Forces on Piles
,”
Rep. Port Harbour Tech. Res. Inst.
,
6
(
1
), pp.
1
30
.
3.
Sawaragi
,
T.
, and
Nochino
,
M.
,
1984
, “
Impact Forces of Nearly Breaking Waves on a Vertical Circular Cylinder
,”
Coastal Eng. J.
,
27
(
12
), pp.
249
263
.
4.
Swift
,
R.
,
1989
, “
Prediction of Breaking Wave Forces on Vertical Cylinders
,”
Coastal Eng.
,
13
(
2
), pp.
97
116
.
5.
Watanbe
,
A.
, and
Horikawa
,
K.
,
1974
, “
Breaking Wave Forces on a Large Diameter Cell
,”
Coastal Eng. Proc.
,
1
(
14
), p.
102
.
6.
Wienke
,
J.
, and
Oumeraci
,
H.
,
2005
, “
Breaking Wave Impact Force on a Vertical and Inclined Slender Pile-Ttheoretical and Large-Scale Model Investigations
,”
Coastal Eng.
,
52
(
5
), pp.
435
462
.
7.
Zang
,
J.
,
Taylor
,
P.
,
Morgan
,
G.
,
Stringer
,
R.
,
Orszaghova
,
J.
,
Grice
,
J.
, and
Tello
,
M
,
2010
, “
Steep Wave and Breaking Wave Impact on Offshore Wind Turbine Foundations—Ringing Revisited
,”
25th International Workshop on Water Waves and Floating Bodies Conference
,
May 9–12
.
8.
Tai
,
B.
,
Ma
,
Y.
,
Niu
,
X.
,
Dong
,
G.
, and
Perlin
,
M.
,
2019
, “
Experimental Investigation of Impact Forces Induced by Plunging Breakers on a Vertical Cylinder
,”
Ocean. Eng.
,
189
(
10
), p.
106362
.
9.
Ning
,
D.
,
Zang
,
J.
,
Liu
,
S.
,
Taylor
,
R.
,
Teng
,
B.
, and
Taylor
,
P.
,
2009
, “
Free Surface Evolution and Wave Kinematics for Nonlinear Uni-directional Focused Wave Groups
,”
Ocean. Eng.
,
36
(
11
), pp.
1226
1243
.
10.
Fernández
,
H.
,
Sriram
,
V.
,
Schimmels
,
S.
, and
Oumeraci
,
H.
,
2014
, “
Extreme Wave Generation Using Self Correcting Method—Revisited
,”
Coastal Eng.
,
93
(
11
), pp.
15
31
.
11.
Bonakdar
,
L.
, and
Oumeraci
,
H.
,
2015
, “
Pile Group Effect on the Wave Loading of a Slender Pile: A Summary of Laboratory Investigations
,”
Ocean. Eng.
,
108
, pp.
449
461
.
12.
Xie
,
Z.
,
Lu
,
L.
,
Stoesser
,
T.
,
Lin
,
J.-g.
,
Pavlidis
,
D.
,
Salinas
,
P.
,
Pain
,
C.
, and
Matar
,
O.
,
2017
, “
Numerical Simulation of Three-dimensional Breaking Waves and Its Interaction With a Vertical Circular Cylinder
,”
J. Hydrodynamics
,
29
(
10
), pp.
800
804
.
13.
Lin
,
P.
, and
Liu
,
P.
,
1998
, “
A Numerical Study of Breaking Waves in Surf Zone
,”
J. Fluid. Mech.
,
359
(
3
), pp.
239
264
.
14.
Bihs
,
H.
,
Kamath
,
A.
,
Alagan Chella
,
M.
, and
Arntsen
,
Ø. A.
,
2018
, “
Extreme Wave Generation, Breaking, and Impact Simulations Using Wave Packets in Reef3d
,”
ASME J. Offshore. Mech. Arct. Eng.
,
141
(
4
), p.
041802
.
15.
Bihs
,
H.
,
Alagan Chella
,
M.
,
Kamath
,
A.
, and
Arntsen
,
Ø. A.
,
2017
, “
Numerical Investigation of Focused Waves and Their Interaction With a Vertical Cylinder Using REEF3D
,”
ASME J. Offshore. Mech. Arct. Eng.
,
139
(
4
), p.
041101
.
16.
Kamath
,
A.
,
Alagan Chella
,
M.
,
Bihs
,
H.
, and
Arntsen
,
Ø. A.
,
2016
, “
Breaking Wave Interaction With a Vertical Cylinder and the Effect of Breaker Location
,”
Ocean. Eng.
,
128
(
12
), pp.
105
115
.
17.
Kamath
,
A.
,
Alagan Chella
,
M.
,
Bihs
,
H.
, and
Arntsen
,
Ø. A.
,
2015
, “
Evaluating Wave Forces on Groups of Three and Nine Cylinders Using a 3D Numerical Wave Tank
,”
Eng. Appl. Comput. Fluid Mech.
,
9
(
7
), pp.
1
12
.
18.
Kamath
,
A.
,
Alagan Chella
,
M.
,
Bihs
,
H.
, and
Arntsen
,
Ø. A.
,
2015
, “
CFD Investigations of Wave Interaction With a Pair of Large Tandem Cylinders
,”
Ocean. Eng.
,
108
(
11
), pp.
738
748
.
19.
Bihs
,
H.
,
2017
,
DIVEMesh :: User’s Guide
.
Department of Civil and Environmental Engineering, NTNU Trondheim
.
20.
Bihs
,
H.
,
Kamath
,
A.
,
Alagan Chella
,
M.
, and
Arntsen
,
Ø. A.
,
2016
, “
Breaking-Wave Interaction With Tandem Cylinders Under Different Impact Scenarios
,”
J. Waterway Port Coastal Ocean Eng.
,
142
(
3
), p.
04016005
.
21.
Alagan Chella
,
M.
,
Bihs
,
H.
,
Kamath
,
A.
,
Myrhaug
,
D.
, and
Arntsen
,
Ø. A.
,
2019
, “
Breaking Wave Interaction With a Group of Four Vertical Slender Cylinders in Two Square Arrangements
,”
ASME J. Offshore. Mech. Arct. Eng.
,
141
(
4
), p.
061802
.
22.
Bihs
,
H.
,
Kamath
,
A.
,
Alagan Chella
,
M.
,
Aggarwal
,
A.
, and
Arntsen
,
Ø A.
,
2016
, “
A New Level Set Numerical Wave Tank With Improved Density Interpolation for Complex Wave Hydrodynamics
,”
Comput. Fluids
,
140
(
25
), pp.
191
208
.
23.
Chorin
,
A. J.
,
1968
, “
Numerical Solution of the Navier-Stokes Equations
,”
Math. Comput.
,
22
(
104
), pp.
745
762
.
24.
Wilcox
,
D. C.
,
1988
, “
Reassessment of the Scale-Determining Equation for Advanced Turbulence Models
,”
AIAA. J.
,
26
(
11
), pp.
1299
1310
.
25.
Durbin
,
P.
,
2009
, “
Limiters and Wall Treatments in Applied Turbulence Modeling
,”
Fluid Dyn. Res.
,
41
(
1
), pp.
1
18
.
26.
Hossain
,
M.
, and
Rodi
,
W.
,
1980
,“
Mathematical Modeling of Vertical Mixing in Stratified Channel Flow
,
Second Symposium on Stratified Flows, Trondheim
,
Norway
.
27.
Gottlieb
,
S.
, and
Shu
,
C.-W.
,
1998
, “
Total Variation Diminishing Runge-kutta Schemes
,”
Math. Comput.
,
67
(
221
), pp.
73
85
.
28.
Jiang
,
G.-S.
, and
Peng
,
D.
,
2000
, “
Weighted Eno Schemes for Hamilton–Jacobi Equations
,”
SIAM J. Sci. Comput.
,
21
(
6
), pp.
2126
2143
.
29.
Jiang
,
G.-S.
, and
Shu
,
C.-W.
,
1996
, “
Efficient Implementation of Weighted Eno Schemes
,”
J. Comput. Phys.
,
126
(
1
), pp.
202
228
.
30.
Shu
,
C.-W.
, and
Osher
,
S.
,
1988
, “
Efficient Implementation of Essentially Non-Oscillatory Shock-Capturing Schemes
,”
J. Comput. Phys.
,
77
(
2
), pp.
439
471
.
31.
Mayer
,
S.
,
Garapon
,
A.
, and
Sørensen
,
L.
,
1998
, “
A Fractional Step Method for Unsteady Free-Surface Flow With Applications to Non-linear Wave Dynamics
,”
Int. J. Num. Methods Fluids
,
28
(
2
), pp.
293
315
.
32.
Jacobsen
,
N. G.
,
Fuhrman
,
D. R.
, and
Fredsøe
,
J.
,
2012
, “
A Wave Generation Toolbox for the Open-Source Cfd Library: Openfoam®
,”
Int. J. Num. Methods Fluids
,
70
(
9
), pp.
1073
1088
.
33.
Bonmarin
,
P.
,
1989
, “
Geometric Properties of Deep-Water Breaking Waves
,”
J. Fluid. Mech.
,
209
(
12
), pp.
405
433
.
You do not currently have access to this content.