In this paper, a numerical model is developed to study the dynamic response of a porous seabed to combined wave-current loadings. While the Reynolds-averaged Navier–Stokes equations with k-ε turbulence closure scheme and internal wave-maker function are solved for the phenomenon of wave-current interaction, Biot's poro-elastic “u-p” model is adopted for the seabed response. After validated by the laboratory measurements, this model is applied for the investigation of the effects of waves and currents on the wave-current induced pore pressures. Furthermore, the effects of currents on maximum liquefaction depths of a porous seabed is examined, and it is concluded that the opposite currents will increase the liquefaction depth up to 30% of that without currents.

References

1.
Jeng
,
D.-S.
,
2003
, “
Wave-Induced Sea Floor Dynamics
,”
ASME Appl. Mech. Rev.
,
56
(
4
), pp.
407
429
.10.1115/1.1577359
2.
Zhou
,
C.
,
Li
,
G.
,
Dong
,
P.
,
Shi
,
J.
, and
Xu
,
J.
,
2011
, “
An Experimental Study of Seabed Responses Around a Marine Pipeline Under Wave and Current Conditions
,”
Ocean Eng.
,
38
, pp.
226
234
.10.1016/j.oceaneng.2010.10.006
3.
Zen
,
K.
, and
Yamazaki
,
H.
,
1990
, “
Mechanism of Wave-Induced Liquefaction and Densification in Seabed
,”
Soils and Foundations
,
30
(
4
), pp.
90
104
.10.3208/sandf1972.30.4_90
4.
Rahman
,
M. S.
,
1997
, “
Instability and Movement of Oceanfloor Sediments: A Review
,”
Int. J. Offshore Polar Eng.
,
7
(
3
), pp.
220
225
.
5.
Jeng
,
D.-S.
, and
Seymour
,
B. R.
,
2007
, “
A Simplified Analytical Approximation for Pore-Water Pressure Build-Up in a Porous Seabed
,”
J. Waterway, Port, Coastal, Ocean Eng.
,
133
(
4
), pp.
309
312
.10.1061/(ASCE)0733-950X(2007)133:4(309)
6.
Jeng
,
D.-S.
, and
Hsu
,
J. S. C.
,
1996
, “
Wave-Induced Soil Response in a Nearly Saturated Sea-Bed of Finite Thickness
,”
Géotechnique
,
46
(
3
), pp.
427
440
.10.1680/geot.1996.46.3.427
7.
Ulker
,
M. B. C.
,
Rahman
,
M. S.
, and
Jeng
,
D.-S.
,
2009
, “
Wave-Induced Response of Seabed: Various Formulations and Their Applicability
,”
Appl. Ocean Res.
,
31
(
1
), pp.
12
24
.10.1016/j.apor.2009.03.003
8.
Jeng
,
D.-S.
,
2013
,
Porous Models for Wave-Seabed Interaction
,
Springer
,
New York
.
9.
Tzang
,
S. Y.
,
1998
, “
Unfluidized Soil Responses of a Silty Seabed to Monochromatic Waves
,”
Coastal Eng.
,
35
(
4
), pp.
283
301
.10.1016/S0378-3839(98)00039-8
10.
Chang
,
S.
,
Lin
,
J.
,
Chien
,
L.
, and
Chiu
,
Y.
,
2007
, “
An Experimental Study on Non-Linear Progressive Wave-Induced Dynamic Stresses in Seabed
,”
Ocean Eng.
,
34
, pp.
2311
2329
.10.1016/j.oceaneng.2007.05.010
11.
Hur
,
D. S.
,
Kim
,
C. H.
,
Kim
,
D. S.
, and
Yoon
,
J. S.
,
2008
, “
Simulation of the Nonlinear Dynamic Interactions Between Waves, A Submerged Breakwater and the Seabed
,”
Ocean Eng.
,
35
, pp.
511
522
.10.1016/j.oceaneng.2007.12.002
12.
Ulker
,
M.
,
Rahman
,
M. S.
, and
Guddati
,
M. N.
,
2010
, “
Wave-Induced Dynamic Response and Instability of Seabed Around Caisson Breakwater
,”
Ocean Eng.
,
37
, pp.
1522
1545
.10.1016/j.oceaneng.2010.09.004
13.
Zhang
,
J.-S.
,
Jeng
,
D.-S.
, and
Liu
,
P. L.-F.
,
2011
, “
Numerical Study for Waves Propagating Over a Porous Seabed Around a Submerged Permeable Breakwater: PORO-WSSI II Model
,”
Ocean Eng.
,
38
, pp.
954
966
.10.1016/j.oceaneng.2010.10.018
14.
Zhang
,
J.-S.
,
Jeng
,
D.-S. J.
,
Liu
,
P. L.-F.
, and
Zhang
,
C.
,
2012
, “
Response of a Porous Seabed to Water Waves Over Permeable Submerged Breakwaters With Bragg Reflection
,”
Ocean Eng.
,
43
, pp.
1
12
.10.1016/j.oceaneng.2012.01.024
15.
Jeng
,
D.-S.
,
Ye
,
J. H.
Zhang
,
J.-S.
, and
Liu
,
P. L.-F.
,
2013
, “
An Integrated Model for the Wave-Induced Seabed Response Around Marine Structures: Model Verifications and Applications
,”
Coastal Eng.
,
72
, pp.
1
19
.10.1016/j.coastaleng.2012.08.006
16.
Kemp
,
P. H.
, and
Simons
,
R. R.
,
1982
, “
The Interaction of Waves and a Turbulent Current: Waves Propagating With the Current
,”
J. Fluid Mech.
,
116
, pp.
227
250
.10.1017/S0022112082000445
17.
Kemp
,
P. H.
, and
Simons
,
R. R.
,
1983
, “
The Interaction of Waves and a Turbulent Current: Waves Propagating Against the Current
,”
J. Fluid Mech.
,
130
, pp.
73
89
.10.1017/S0022112083000981
18.
Fredsøe
,
J.
,
Andersen
,
K. H.
, and
Sumer
,
B. M.
,
1999
, “
Wave Plus Current Over a Ripple-Covered Bed
,”
Coastal Eng.
,
38
, pp.
177
221
.10.1016/S0378-3839(99)00047-2
19.
Zheng
,
J.
, and
Tang
,
Y.
,
2009
, “
Numerical Simulation of Spatial Lag Between Wave Breaking Point and Location of Maximum Wave-Induced Current
,”
China Ocean Eng.
,
23
, pp.
59
71
.
20.
Umeyama
,
M.
,
2009
, “
Changes in Turbulent Flow Structure Under Combined Wave-Current Motions
,”
J. Waterway, Port, Coastal Ocean Eng.
,
135
, pp.
213
227
.10.1061/(ASCE)0733-950X(2009)135:5(213)
21.
Umeyama
,
M.
,
2011
, “
Coupled PIV and PTV Measurements of Particle Velocities and Trajectories for Surface Waves Following a Steady Current
,”
J Waterway, Port, Coastal Ocean Eng.
,
137
, pp.
85
94
.10.1061/(ASCE)WW.1943-5460.0000067
22.
Rodi
,
W.
,
1980
,
Turbulence Models and Their Application in Hydraulics-State-of-the-Art Review
(IAHR Monographs), Taylor & Francis, London.
23.
Lin
,
P.
, and
Liu
,
P. L.-F.
,
1999
, “
Internal Wave-Maker for Navier–Stokes Equations Models
,”
J. Waterway, Port, Coastal, Ocean Eng.
,
125
(
4
), pp.
207
415
.10.1061/(ASCE)0733-950X(1999)125:4(207)
24.
Biot
,
M. A.
,
1956
, “
Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid, Part I: Low-Frequency Range
,”
J. Acoust. Soc. Am.
,
28
, pp.
168
178
.10.1121/1.1908239
25.
Zienkiewicz
,
O. C.
,
Chang
,
C. T.
, and
Bettess
,
P.
,
1980
, “
Drained, Undrained, Consolidating and Dynamic Behaviour Assumptions in Soils
,”
Geotechnique
,
30
(
4
), pp.
385
395
.10.1680/geot.1980.30.4.385
26.
Wu
,
T. R.
,
2004
, “
A Numerical Study of Three-Dimensional Breaking Waves and Turbulence Effects
,” Ph.D. thesis, Cornell University, New York.
27.
Liu
,
P. L.-F.
,
Lin
,
P.
,
Chang
,
K. A.
, and
Sakakiyama
,
T.
,
1999
, “
Numerical Modelling of Wave Interaction With Porous Structures
,”
J. Waterway, Port, Coastal Ocean Eng.
,
125
(
6
), pp.
322
330
.10.1061/(ASCE)0733-950X(1999)125:6(322)
28.
Bussmann
,
M.
,
Kothe
,
D. B.
, and
Sicilian
,
J. M.
,
2002
, “
Modeling High Density Ratio Incompressible Interfacial Flows
,”
ASME
2002 Joint U.S.-European Fluids Engineering Division Conference. 10.1115/FEDSM2002-31125
29.
Barth
,
T. J.
,
1992
, “
Aspects of Unstructured Grids and Finite-Volume Solvers for the Euler and Navier–Stokes Equations
,” AGARD, Special Course on Unstructured Grid Methods for Advection Dominated Flows.
30.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Physics
,
39
, pp.
201
225
.10.1016/0021-9991(81)90145-5
You do not currently have access to this content.