Abstract

In the last several decades, some numerical approaches have been proposed to deal with three-dimensional wave-body interaction problems in sloping bottom environment. Most of them either adopt the finite depth Green function or add numerical damping terms into the free surface condition to treat far field radiation condition, which certainly give rise to numerical errors. The hybrid model (Belibassakis, “A Boundary Element Method for the Hydrodynamic Analysis of Floating Bodies in Variable Bathymetry Regions,” Eng. Anal. Boundary Elements 32, pp. 796–810) adopting the consistent coupled-mode system for incident wave propagation problem combining with the three-dimensional bottom-dependent Green function to treat the diffraction and radiation problem is a complete formulation, as the latter function appropriately characterize the far field radiation wave pattern over a smoothly sloping bottom. However, this model has not been validated after its publication. In this connection, comparisons with computational fluid dynamic (CFD) results are presented to verify its accuracy. Application of this hybrid model is also performed to investigate the effects on the floating hemisphere by the sloping bottom.

References

1.
Oortmerssen
,
G. V.
,
1976
, “
The Motions of a Ship in Swallow Water
,”
Ocean Eng.
,
3
(
4
), pp.
221
255
. 10.1016/0029-8018(76)90025-1
2.
Zheng
,
Y. H.
,
You
,
Y. G.
, and
Shen
,
Y. M.
,
2004
, “
On the Radiation and Diffraction of Water Waves by a Rectangular Buoy
,”
Ocean Eng.
,
31
(
8–9
), pp.
1063
1082
. 10.1016/j.oceaneng.2003.10.012
3.
Wu
,
B.-J.
,
Zheng
,
Y.-H.
,
You
,
Y.-G.
,
Sun
,
X.-Y.
, and
Chen
,
Y.
,
2004
, “
On Diffraction and Radiation Problem for a Cylinder Over a Caisson in Water of Finite Depth
,”
Int. J. Eng. Sci.
,
42
(
11–12
), pp.
1193
1213
. 10.1016/j.ijengsci.2003.12.006
4.
Wehausen
,
J. V.
, and
Laitone
,
E. V.
,
1960
,
Surface waves in Fluid Dynamics/Strömungsmechanik
,
Springer
,
Berlin, Heidelberg
, pp.
446
778
.
5.
Beck
,
R. F.
,
1994
, “
Time-Domain Computations for Floating Bodies
,”
Appl. Ocean Res.
,
16
(
5
), pp.
267
282
. 10.1016/0141-1187(94)90016-7
6.
Lee
,
C.-H.
,
1995
,
WAMIT Theory Manual
,
Massachusetts Institute of Technology, Department of Ocean Engineering
,
Cambridge, MA
.
7.
Shen
,
Y. M.
,
Zheng
,
Y. H.
, and
You
,
Y. G.
,
2005
, “
On the Radiation and Diffraction of Linear Water Waves by a Rectangular Structure Over a Sill. Part I. Infinite Domain of Finite Water Depth
,”
Ocean Eng.
,
32
(
8–7
), pp.
1073
1097
. 10.1016/j.oceaneng.2004.07.011
8.
Liu
,
X.
,
Wang
,
X.
,
Xu
,
S.
, and
Ding
,
A.
,
2020
, “
Influences of a Varying Sill At the Seabed on Two-Dimensional Radiation of Linear Water Waves by a Rectangular Buoy
,”
ASME J. Offshore Mech. Arct. Eng.
,
142
(
4
), p.
041202
. 10.1115/1.4045913
9.
Feng
,
A.
,
Bai
,
W.
,
You
,
Y.
,
Chen
,
Z. M.
, and
Price
,
W. G.
,
2016
, “
A Rankine Source Method Solution of a Finite Depth, Wave-Body Interaction Problem
,”
J. Fluids Struct.
,
62
, pp.
14
32
. 10.1016/j.jfluidstructs.2016.01.002
10.
Feng
,
A.
,
Bai
,
W.
, and
Price
,
W. G.
,
2017
, “
Two-Dimensional Wave Radiation and Diffraction Problems in a Flat Or Sloping Seabed Environment
,”
J. Fluids Struct.
,
75
, pp.
193
212
. 10.1016/j.jfluidstructs.2017.09.001
11.
Ferreira
,
M.
, and
Newman
,
J.
,
2009
, “
Diffraction Effects and Ship Motions on An Artificial Seabed
,”
Proceedings of 24th International Workshop on Water Waves and Floating Bodies
,
Zelenogorsk, Russia
,
Apr. 9–11
.
12.
Hauteclocque
,
G. D.
,
Rezende
,
F.
,
Giorgiutti
,
Y.
, and
Chen
,
X. B.
,
2009
, “
Wave Kinematics and Seakeeping Calculation With Varying Bathymetry
,”
ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering
,
Honolulu, HI
,
May 31–June 5
.
13.
Wei
,
W.
,
Fu
,
S.
,
Moan
,
T.
,
Lu
,
Z.
, and
Deng
,
S.
,
2017
, “
A Discrete-Modules-Based Frequency Domain Hydroelasticity Method for Floating Structures in Inhomogeneous Sea Conditions
,”
J. Fluids Struct.
,
74
, pp.
321
339
. 10.1016/j.jfluidstructs.2017.06.002
14.
Buchner
,
B.
,
2006
, “
The Motions of a Ship on a Sloped Seabed
,”
25th International Conference on Offshore Mechanics and Arctic Engineering
,
Hamburg, Germany
,
June 4–9
, pp.
339
347
.
15.
Belibassakis
,
K. A.
,
2008
, “
A Boundary Element Method for the Hydrodynamic Analysis of Floating Bodies in Variable Bathymetry Regions
,”
Eng. Anal. Boundary Elements
,
32
(
10
), pp.
796
810
. 10.1016/j.enganabound.2008.02.003
16.
Belibassakis
,
K. A.
, and
Athanassoulis
,
G. A.
,
2004
, “
Three-Dimensional Green’s Function for Harmonic Water Waves Over a Bottom Topography With Different Depths At Infinity
,”
J. Fluid Mech.
,
510
(
510
), pp.
267
302
. 10.1017/S0022112004009516
17.
Athanassoulis
,
G. A.
, and
Belibassakis
,
K. A.
,
1999
, “
A Consistent Coupled-Mode Theory for the Propagation of Small-Amplitude Water Waves Over Variable Bathymetry Regions
,”
J. Fluid Mech.
,
75
(
389
), pp.
275
301
. 10.1017/S0022112099004978
18.
Ding
,
J.
,
Tian
,
C.
,
Wu
,
Y. S.
,
Li
,
Z. W.
,
Ling
,
H. J.
, and
Ma
,
X. Z.
,
2017
, “
Hydroelastic Analysis and Model Tests of a Single Module VLFS Deployed Near Islands and Reefs
,”
Ocean Eng.
,
144
, pp.
224
234
. 10.1016/j.oceaneng.2017.08.043
19.
Kim
,
T.
, and
Kim
,
Y.
,
2013
, “
Numerical Analysis on Floating-Body Motion Responses in Arbitrary Bathymetry
,”
Ocean Eng.
,
62
, pp.
123
139
. 10.1016/j.oceaneng.2013.01.012
20.
Wang
,
Y.
,
Wang
,
X.
,
Xu
,
S.
, and
Wang
,
L.
,
2018
, “
Motion Responses of a Catenary-Taut-Hybrid Moored Single Module of a Semisubmersible Very Large Floating Structure in Multisloped Seabed
,”
ASME J. Offshore Mech. Arct. Eng.
,
140
(
3
), p.
031102
. 10.1115/1.4038501
21.
Wang
,
Y.
,
Xu
,
S.
,
Wang
,
L.
, and
Wang
,
X.
,
2019
, “
Motion Responses of a Catenary-Taut-Tendon Hybrid Moored Single Module of a Semisubmersible-Type VLFS Over Uneven Seabed
,”
J. Mar. Sci. Technol.
,
24
(
3
), pp.
780
798
. 10.1007/s00773-018-0587-6
22.
Gadelho
,
J.
,
Rodrigues
,
J.
,
Lavrov
,
A.
, and
Soares
,
C. G.
,
2018
, “
Heave and Sway Hydrodynamic Coefficients of Ship Hull Sections in Deep and Shallow Water Using Navier–Stokes Equations
,”
Ocean Eng.
,
154
, pp.
262
276
. 10.1016/j.oceaneng.2018.02.025
23.
Tran
,
T. T.
, and
Kim
,
D.-H.
,
2015
, “
The Coupled Dynamic Response Computation for a Semi-Submersible Platform of Floating Offshore Wind Turbine
,”
J. Wind Eng. Ind. Aerodyn.
,
147
, pp.
104
119
. 10.1016/j.jweia.2015.09.016
24.
Huang
,
Z.
,
Xu
,
C.
, and
Huang
,
S.
,
2019
, “
A CFD Simulation of Wave Loads on a Pile-Type Oscillating-Water-Column Device
,”
J. Hydrodyn.
,
31
(
1
), pp.
41
49
. 10.1007/s42241-019-0015-3
25.
Xu
,
C.
, and
Huang
,
Z.
,
2019
, “
Three-Dimensional CFD Simulation of a Circular OWC With a Nonlinear Power-Takeoff: Model Validation and a Discussion on Resonant Sloshing Inside the Pneumatic Chamber
,”
Ocean Eng.
,
176
, pp.
184
198
. 10.1016/j.oceaneng.2019.02.010
26.
Cerrato
,
A.
,
Gonzalez
,
J. A.
, and
Rodriguez-Tembleque
,
L.
,
2016
, “
Boundary Element Formulation of the Mild-Slope Equation for Harmonic Water Waves Propagating Over Unidirectional Variable Bathymetries
,”
Eng. Anal. Boundary Elements
,
62
, pp.
22
34
. 10.1016/j.enganabound.2015.09.006
27.
Yuan
,
Z.-M.
,
Incecik
,
A.
, and
Alexander
,
D.
,
2014
, “
Verification of a New Radiation Condition for Two Ships Advancing in Waves
,”
Appl. Ocean Res.
,
48
, pp.
186
201
. 10.1016/j.apor.2014.08.007
28.
Das
,
S.
, and
Cheung
,
K. F.
,
2012
, “
Scattered Waves and Motions of Marine Vessels Advancing in a Seaway
,”
Wave Motion
,
49
(
1
), pp.
181
197
. 10.1016/j.wavemoti.2011.09.003
29.
Massel
,
S. R
,
1989
,
Hydrodynamics of Coastal Zones
,
Elsevier
,
Amsterdam
.
30.
Hulme
,
A.
,
1982
, “
The Wave Forces Acting on a Floating Hemisphere Undergoing Forced Periodic Oscillations
,”
J. Fluid Mech.
,
121
, pp.
443
463
. 10.1017/S0022112082001980
31.
Xie
,
C.
,
Babarit
,
A.
,
Rongère
,
F.
, and
Clément
,
A. H.
,
2018
, “
Use of Clement’s Odes for the Speedup of Computation of the Green Function and Its Derivatives for Floating Or Submerged Bodies in Deep Water
,”
ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering
,
Madrid, Spain
,
June 17–22
.
32.
CD-adapco, S.
,
2017
,
Star CCM+ User Guide Version 12.04
,
CD-Adapco
,
New York
.
33.
Fonfach
,
J.
,
Sutulo
,
S.
, and
Guedes Soares
,
C.
,
2011
, “
Numerical Study of Ship-to-Ship Interaction Forces on the Basis of Various Flow Models
,”
2nd International Conference on Ship Manoeuvring in Shallow and Confined Water: Ship to Ship Interaction
,
Trondheim, Norway
,
May 18–20
.
34.
Field
,
P. L.
, and
Neu
,
W. L.
,
2013
, “
Comparison of RANS and Potential Flow Force Computations for One DOF Heave and Pitch of the ONR Tumblehome Hullform
,”
ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering
,
Nantes, France
,
June 9–14
, Vol.
55430
,
American Society of Mechanical Engineers
, p.
V009T12A023
.
35.
Mucha
,
P.
,
Robertson
,
A.
,
Jonkman
,
J.
, and
Wendt
,
F.
,
2019
, “
Hydrodynamic Analysis of a Suspended Cylinder Under Regular Wave Loading Based on Computational Fluid Dynamics
,”
ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering
,
Glasgow, Scotland, UK
,
June 9–14
, Vol.
58899
,
American Society of Mechanical Engineers
, p.
V010T09A066
.
36.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
. 10.1016/0021-9991(81)90145-5
37.
Van Doormaal
,
J. P.
, and
Raithby
,
G. D.
,
1984
, “
Enhancements of the Simple Method for Predicting Incompressible Fluid Flows
,”
Numer. Heat Transfer
,
7
(
2
), pp.
147
163
. 10.1080/01495728408961817
38.
Muzaferija
,
S.
,
1998
, “Computation of Free Surface Flows Using Interface-Tracking and Interface-Capturing Methods,”
Nonlinear Water-Wave Interaction
.
Computational Mechanics
,
Southampton
.
39.
Muzaferija
,
S.
,
1999
, “
A Two-Fluid Navier–Stokes Solver to Simulate Water Entry
,”
Proceedings of 22nd Symposium on Naval Architecture
,
Washington, DC
,
Aug. 9–14
,
National Academy Press
, pp.
638
651
.
40.
Benek
,
J.
,
Buning
,
P.
, and
Steger
,
J.
,
1985
, “
A 3-D Chimera Grid Embedding Technique
,”
7th Computational Physics Conference
,
Cincinnati, OH
,
July 15–17
, p.
1523
.
41.
Kim
,
J.
,
O’Sullivan
,
J.
, and
Read
,
A.
,
2012
, “
Ringing Analysis of a Vertical Cylinder by Euler Overlay Method
,”
ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering
,
Rio de Janeiro, Brazil
,
July 1–6
,
American Society of Mechanical Engineers
, pp.
855
866
.
42.
ITTC
,
2017
, “
ITTC-Recommended Guidelines (2017) Uncertainty analysis in CFD verification and validation methodology and procedures.
Proceedings of 28th International Towing Tank Conference
,
Wuxi, China
,
Sept. 17–22
.
43.
Stern
,
F.
,
Wilson
,
R.
, and
Shao
,
J.
,
2006
, “
Quantitative V&V of CFD Simulations and Certification of CFD Codes
,”
Int. J. Numer. Methods Fluids
,
50
(
11
), pp.
1335
1355
. 10.1002/fld.1090
44.
Feng
,
A.
,
You
,
Y.
, and
Cai
,
H.
,
2019
, “
An Improved Rankine Source Panel Method for Three Dimensional Water Wave Problems
,”
Int. J. Naval Arch. Ocean Eng.
,
11
(
1
), pp.
70
81
. 10.1016/j.ijnaoe.2018.02.001
45.
Tsai
,
C. C.
, and
Chou
,
W. R.
,
2015
, “
Comparison Between Consistent Coupled-Mode System and Eigenfunction Matching Method for Solving Water Wave Scattering
,”
J. Mar. Sci. Technol.
,
23
(
6
), pp.
870
881
.
You do not currently have access to this content.