Abstract

The presence of rain-induced leading edge erosion of wind turbine blades (WTBs) necessitates the development of erosion models. One of the essential parameters for erosion modeling is the relative impact velocity between rain droplets and the rotating blade. Based on this parameter, the erosion damage rate of a WTB is calculated to estimate the expected leading edge lifetime. The environmental conditions that govern this parameter have site-specific variations, and thus, rain and wind loading on a turbine differ for onshore and offshore locations. In addition, there are wave loads present in the offshore environment. The present paper tries to provide guidelines for erosion modeling and investigates whether there are differences in erosion of blades due to (1) varying rainfall conditions modeled using different droplet size distributions for onshore and offshore locations in combination with (2) winds of varying turbulence intensities and (3) wave-induced loads. Aero-hydro-servo-elastic simulations are carried out for an onshore wind turbine (WT) and a monopile-supported offshore WT. Furthermore, erosion variables such as the relative impact velocities and the associated erosion damage rate of a blade are analyzed for various blade azimuth angles. The study shows that the rainfall intensity and turbulence intensity minorly influence the impact velocity and pressure but have a substantial effect on the overall erosion damage rate. Additionally, a significantly higher erosion damage rate is found for blades exposed to offshore rainfall conditions than for blades under onshore rainfall conditions. Furthermore, no substantial influence on erosion is found because of wave-induced loads.

References

1.
Verma
,
A. S.
,
Vedvik
,
N. P.
, and
Gao
,
Z.
,
2019
, “
A Comprehensive Numerical Investigation of the Impact Behaviour of n Offshore Wind Turbine Blade Due to Impact Loads During Installation
,”
Ocean Engineering
,
172
, pp.
127
145
. 10.1016/j.oceaneng.2018.11.021
2.
Verma
,
A. S.
,
Jiang
,
Z.
,
Vedvik
,
N. P.
,
Gao
,
Z.
, and
Ren
,
Z.
,
2019
, “
Impact Assessment of a Wind Turbine Blade Root During an Offshore Mating Process
,”
Eng. Struct.
,
180
, pp.
205
222
. 10.1016/j.engstruct.2018.11.012
3.
Verma
,
A. S.
,
Jiang
,
Z.
,
Ren
,
Z.
,
Gao
,
Z.
, and
Vedvik
,
N. P.
,
2019
, “
Response-Based Assessment of Operational Limits for Mating Blades on Monopile-Type Offshore Wind Turbines
,”
Energies
,
12
(
10
), p.
1867
. 10.3390/en12101867
4.
Verma
,
A. S.
,
Vedvik
,
N. P.
,
Haselbach
,
P. U.
,
Gao
,
Z.
, and
Jiang
,
Z.
,
2019
, “
Comparison of Numerical Modelling Techniques for Impact Investigation on a Wind Turbine Blade
,”
Compos. Struct.
,
209
, pp.
856
878
. 10.1016/j.compstruct.2018.11.001
5.
Verma
,
A. S.
,
Zhao
,
Y.
,
Gao
,
Z.
, and
Vedvik
,
N. P.
,
2019
, “
Explicit Structural Response-Based Methodology for Assessment of Operational Limits for Single Blade Installation for Offshore Wind Turbines
,”
Proceedings of the Fourth International Conference in Ocean Engineering (ICOE2018)
,
Chennai, India
,
Feb. 18–21
,
Springer
, pp.
737
750
.
6.
Hofmann
,
M.
, and
Sperstad
,
I. B.
,
2014
, “
Will 10 MW Wind Turbines Bring Down the Operation and Maintenance Cost of Offshore Wind Farms?
Energy Procedia
,
53
, pp.
231
238
. 10.1016/j.egypro.2014.07.232
7.
Mishnaevsky, Jr.
,
L.
,
2019
, “
Repair of Wind Turbine Blades: Review of Methods and Related Computational Mechanics Problems
,”
Renewable Energy
,
140
, pp.
828
839
. https://doi.org/10.1016/j.renene.2019.03.113
8.
Springer
,
G. S.
,
1976
,
Erosion by Liquid Impact
,
John Wiley and Sons
,
New York, NY
.
9.
Herring
,
R.
,
Dyer
,
K.
,
Martin
,
F.
, and
Ward
,
C.
,
2019
, “
The Increasing Importance of Leading Edge Erosion and a Review of Existing Protection Solutions
,”
Renew. Sustain. Energy Rev.
,
115
, pp.
109382
. 10.1016/j.rser.2019.109382
10.
Wiser
,
R.
,
Jenni
,
K.
,
Seel
,
J.
,
Baker
,
E.
,
Hand
,
M.
,
Lantz
,
E.
, and
Smith
,
A.
,
2016
, “
Forecasting Wind Energy Costs and Cost Drivers: The Views of the World’s Leading Experts
,”
The Views of the World’s Leading Experts; IEA: Paris, Germany
. https://escholarship.org/content/qt0s43r9w4/qt0s43r9w4.pdf
11.
Slot
,
H.
,
IJzerman
,
R.
,
Nord-Varhaug
,
K.
, and
van der Heide
,
E.
,
2018
, “
Rain Erosion Resistance of Injection Moulded and Compression Moulded Polybutylene Terephthalate PBT
,”
Wear
,
414
, pp.
234
242
. 10.1016/j.wear.2018.08.016
12.
Keegan
,
M. H.
,
Nash
,
D.
, and
Stack
,
M.
,
2014
, “
Wind Turbine Blade Leading Edge Erosion: An Investigation of Rain Droplet and Hailstone Impact Induced Damage Mechanisms
,”
Ph.D. thesis
,
University of Strathclyde
,
Glasgow
.
13.
Eisenberg
,
D.
,
Laustsen
,
S.
, and
Stege
,
J.
,
2018
, “
Wind Turbine Blade Coating Leading Edge Rain Erosion Model: Development and Validation
,”
Wind Energy
,
21
(
10
), pp.
942
951
. 10.1002/we.2200
14.
Bech
,
J. I.
,
Hasager
,
C. B.
, and
Bak
,
C.
,
2018
, “
Extending the Life of Wind Turbine Blade Leading Edges by Reducing the Tip Speed During Extreme Precipitation Events
,”
Wind Eng. Sci. Discuss.
,
3
(
2
), pp.
729
748
.
15.
Chen
,
J.
,
Wang
,
J.
, and
Ni
,
A.
,
2019
, “
A Review on Rain Erosion Protection of Wind Turbine Blades
,”
J. Coat. Technol. Res.
,
16
(
1
), pp.
15
24
. 10.1007/s11998-018-0134-8
16.
Amirzadeh
,
B.
,
Louhghalam
,
A.
,
Raessi
,
M.
, and
Tootkaboni
,
M.
,
2017
, “
A Computational Framework for the Analysis of Rain-Induced Erosion in Wind Turbine Blades, Part I: Stochastic Rain Texture Model and Drop Impact Simulations
,”
J. Wind Eng. Ind. Aerodyn.
,
163
, pp.
33
43
. 10.1016/j.jweia.2016.12.006
17.
Verma
,
A. S.
,
Castro
,
S. G.
,
Jiang
,
Z.
, and
Teuwen
,
J. J.
,
2020
, “
Numerical Investigation of Rain Droplet Impact on Offshore Wind Turbine Blades Under Different Rainfall Conditions: A Parametric Study
,”
Compos. Struct.
,
241
, p.
112096
. 10.1016/j.compstruct.2020.112096
18.
Keegan
,
M. H.
,
Nash
,
D.
, and
Stack
,
M.
,
2013
, “
On Erosion Issues Associated With the Leading Edge of Wind Turbine Blades
,”
J. Phys. D: Appl. Phys.
,
46
(
38
), p.
383001
. 10.1088/0022-3727/46/38/383001
19.
Castorrini
,
A.
,
Corsini
,
A.
,
Rispoli
,
F.
,
Venturini
,
P.
,
Takizawa
,
K.
, and
Tezduyar
,
T. E.
,
2016
, “
Computational Analysis of Wind-Turbine Blade Rain Erosion
,”
Comput. Fluids
,
141
, pp.
175
183
. 10.1016/j.compfluid.2016.08.013
20.
Verma
,
A. S.
,
Castro
,
S. G.
,
Jiang
,
Z.
,
Hu
,
W.
, and
Teuwen
,
J. J.
,
2020
, “
Leading Edge Erosion of Wind Turbine Blades: Effects of Blade Surface Curvature on Rain Droplet Impingement Kinematics
,”
J. Phys.: Conf. Ser.
,
1618
, p.
052003
.
21.
Herring
,
R.
,
Dyer
,
K.
,
Howkins
,
P.
, and
Ward
,
C.
,
2020
, “
Characterisation of the Offshore Precipitation Environment to Help Combat Leading Edge Erosion of Wind Turbine Blades
,”
Wind Energy Sci. Discuss.
,
2020
(
5
), pp.
1399
1409
. https://wes.copernicus.org/articles/5/1399/2020/
22.
De Lima
,
J.
,
1989
, “
The Influence of the Angle of Incidence of the Rainfall on the Overland Flow Process
,”
Proc. 3rd IAHS Symp. New Directions for Surface Water Modeling, Baltimore. IAHS Publ. No. 181
,
Baltimore, MD
,
May
.
23.
Best
,
A.
,
1950
, “
The Size Distribution of Raindrops
,”
Q. J. R. Metereol. Soc.
,
76
(
327
), pp.
16
36
. 10.1002/qj.49707632704
24.
Larsen
,
T. J.
, and
Hansen
,
A. M.
,
2007
,
How 2 HAWC2, the user's Manual, Technical Report (Forskningscenter Risoe, Risoe)
.
25.
Jonkman
,
J.
,
Butterfield
,
S.
,
Musial
,
W.
, and
Scott
,
G.
,
2009
, “
Definition of a 5-MW Reference Wind Turbine for Offshore System Development
,” National Renewable Energy Laboratory, Golden, CO, Technical Report No. NREL/TP-500-38060.
26.
Zhang
,
R.
,
Zhang
,
B.
,
Lv
,
Q.
,
Li
,
J.
, and
Guo
,
P.
,
2019
, “
Effects of Droplet Shape on Impact Force of Low-Speed Droplets Colliding With Solid Surface
,”
Exp. Fluids
,
60
(
4
), p.
64
. 10.1007/s00348-019-2712-7
27.
Zhang
,
B.
,
Li
,
J.
,
Guo
,
P.
, and
Lv
,
Q.
,
2017
, “
Experimental Studies on the Effect of Reynolds and Weber Numbers on the Impact Forces of Low-Speed Droplets Colliding With a Solid Surface
,”
Exp. Fluids
,
58
(
9
), p.
125
. 10.1007/s00348-017-2413-z
28.
Jonkman
,
J.
, and
Musial
,
W.
,
2010
, “Offshore Code Comparison Collaboration (OC3) for Iea Wind Task 23 Offshore Wind Technology and Deployment,” National Renewable Energy Laboratory (NREL), Golden, CO, Technical Report.
29.
Shirzadeh
,
R.
,
Devriendt
,
C.
,
Bidakhvidi
,
M. A.
, and
Guillaume
,
P.
,
2013
, “
Experimental and Computational Damping Estimation of an Offshore Wind Turbine on a Monopile Foundation
,”
J. Wind Eng. Ind. Aerodyn.
,
120
, pp.
96
106
. 10.1016/j.jweia.2013.07.004
30.
Morison
,
J.
,
Johnson
,
J.
, and
Schaaf
,
S.
,
1950
, “
The Force Exerted by Surface Waves on Piles
,”
J. Petroleum Technol.
,
2
(
5
), pp.
149
154
. 10.2118/950149-G
31.
Hasselmann
,
K.
,
1973
, “
Measurements of Wind Wave Growth and Swell Decay During the Joint North Sea Wave Project (jonswap)
,”
Deutschen Hydrografischen Zeitschrift
,
8
, pp.
95
.
32.
Verma
,
A. S.
,
Gao
,
Z.
,
Jiang
,
Z.
,
Ren
,
Z.
, and
Vedvik
,
N. P.
,
2019
, “
Structural Safety Assessment of Marine Operations From a Long-Term Perspective: A Case Study of Offshore Wind Turbine Blade Installation
,”
ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering
,
Glasgow, Scotland
,
June 9–14
.
33.
Madsen
,
H. A.
,
Riziotis
,
V.
,
Zahle
,
F.
,
Hansen
,
M. O. L.
,
Snel
,
H.
,
Grasso
,
F.
,
Larsen
,
T. J.
,
Politis
,
E.
, and
Rasmussen
,
F.
,
2012
, “
Blade Element Momentum Modeling of Inflow With Shear in Comparison With Advanced Model Results
,”
Wind Energy
,
15
(
1
), pp.
63
81
. 10.1002/we.493
34.
Pirrung
,
G. R.
,
Madsen
,
H. A.
,
Kim
,
T.
, and
Heinz
,
J.
,
2016
, “
A Coupled Near and Far Wake Model for Wind Turbine Aerodynamics
,”
Wind Energy
,
19
(
11
), pp.
2053
2069
. 10.1002/we.1969
35.
Mann
,
J.
,
1994
, “
The Spatial Structure of Neutral Atmospheric Surface-Layer Turbulence
,”
J. Fluid Mech.
,
273
, pp.
141
168
. 10.1017/S0022112094001886
36.
Ren
,
Z.
,
Skjetne
,
R.
,
Verma
,
A. S.
,
Jiang
,
Z.
,
Gao
,
Z.
, and
Halse
,
K. H.
,
2021
, “
Active Heave Compensation of Floating Wind Turbine Installation Using a Catamaran Construction Vessel
,”
Marine Struct.
,
75
, p.
102868
. 10.1016/j.marstruc.2020.102868
You do not currently have access to this content.