Abstract

The main objective of this study is to develop an optimal life extension management strategy for ageing offshore wind farms. Finding the appropriate performance metric for an operation is essential for a durable, reliable, and profitable offshore wind farm operation. To this end, the key metrics to evaluate the life extension performance of an offshore wind farm are investigated. The mean value and the standard deviation of each performance metric are calculated using a probabilistic techno-economic assessment framework for a single offshore wind asset, which is later extended to evaluate the whole offshore wind farm by the multi-asset portfolio optimization. In this regard, the Markowitz modern portfolio theory is applied to estimate a risk-adjusted return parameter, the Sharpe ratio of the overall portfolio of offshore wind assets. Later on, the key performance metrics are compared to identify the most suitable metrics at different stages of life extension, and a further discussion is given for different offshore wind farm sizes. Moreover, the optimal management strategy, which maximizes the Sharpe ratio of the overall offshore wind farm, is analyzed using one of the key performance metrics under optimistic, moderate, and pessimistic scenarios. Finally, the optimal allocation (portfolio) of offshore wind assets attained based on the mean-variance optimization is presented for the different stages of the life extension of the offshore wind farms accounting for the uncertainty propagation during the life extension.

References

1.
Koukal
,
A.
, and
Breitner
,
M. H.
,
2013
, “
A Decision Support Tool for the Risk Management of Offshore Wind Energy Projects
,”
Proceedings of the 11th International Conference on Wirtschaftsinformatik, Association for Information Systems
,
Leipzig, Germany
,
Feb. 27–Mar. 1
pp.
1683
1697
.
2.
Madlener
,
R.
,
Siegers
,
L.
, and
Bendig
,
S.
,
2009
, “
Risk Management und -Controlling bei Offshore Windenergieanlagen
,”
Z. Energ. Wirtsch.
,
33
(
2
), pp.
135
146
.
3.
Prässler
,
T.
, and
Schaechtele
,
J.
,
2012
, “
Comparison of the Financial Attractiveness Among Prospective Offshore Wind Parks in Selected European Countries
,”
Energy Policy
,
45
, pp.
86
101
.
4.
Schillings
,
C.
,
Wanderer
,
T.
,
Cameron
,
L.
,
van der Wal
,
J. T.
,
Jacquemin
,
J.
, and
Veum
,
K.
,
2012
, “
A Decision Support System for Assessing Offshore Wind Energy Potential in the North Sea
,”
Energy Policy
,
49
, pp.
541
551
.
5.
Yeter
,
B.
,
Garbatov
,
Y.
, and
Guedes Soares
,
C.
,
2020
, “
Risk-Based Maintenance Planning of Offshore Wind Farms
,”
Reliab. Eng. Syst. Saf.
,
202
, p.
107062
.
6.
Thöns
,
S.
,
Faber
,
M. H.
, and
Rücker
,
W.
,
2013
, “
Life Cycle Cost Optimised Monitoring Systems for Offshore Wind Turbine Structures
,”
IRIS Industrial Safety and Life Cycle Engineering: Technologies/Standards/Applications
,
VCE Vienna Consulting Engineers, ed. Vienna
,
Austria
, pp.
75
90
.
7.
Lantz
,
E.
,
Wiser
,
R.
, and
Hand
,
M.
,
2012
, “
The Past and Future Cost of Wind Energy
,” National Renewable Energy Lab. (NREL), Golden, CO, NREL/CP-6A20-54526.
8.
Davey
,
H. E.
, and
Nimmo
,
A.
,
2012
,
Offshore Wind Cost Reduction, Pathways Study. Cost Reduction Study
,
The Crown Estate
,
London, UK
.
9.
Price
,
S. J.
, and
Figueira
,
R. B.
,
2017
, “
Corrosion Protection Systems and Fatigue Corrosion in Offshore Wind Structures: Current Status and Future Perspectives
,”
Coatings
,
7
(
2
), p.
25
.
10.
Yeter
,
B.
,
Garbatov
,
Y.
, and
Guedes Soares
,
C.
,
2022
, “
Life-Extension Classification of Offshore Wind Assets Using Unsupervised Machine Learning
,”
Reliab. Eng. Syst. Saf.
,
219
, p.
108229
.
11.
Ziegler
,
L.
,
Gonzalez
,
E.
,
Rubert
,
T.
,
Smolka
,
U.
, and
Melero
,
J. J.
,
2018
, “
Lifetime Extension of Onshore Wind Turbines: A Review Covering Germany, Spain, Denmark, and the UK
,”
Renewable Sustainable Energy Rev.
,
82
(Part 1), pp.
1261
1271
.
12.
Yeter
,
B.
,
Garbatov
,
Y.
, and
Guedes Soares
,
C.
,
2021
, “
Structural Health Monitoring Data Analysis for Ageing Fixed Offshore Wind Turbine Structures
,”
Proceedings of the 40th International Conference on Ocean, Offshore and Arctic Engineering
,
Virtual, Online
,
June 21–30
, Paper No. OMAE2021-63007.
13.
Yeter
,
B.
,
Garbatov
,
Y.
, and
Guedes Soares
,
C.
,
2021
, “
Structural Health Monitoring Data Analysis for Ageing Fixed Offshore Wind Turbines Structures
,”
Proceedings of the 40th International Conference on Ocean, Offshore and Arctic Engineering
,
Virtual, Online
,
June 21–30
,
American Society of Mechanical Engineers
, p.
V002T002A030
.
14.
Lian
,
J.
,
Cai
,
O.
,
Dong
,
X.
,
Jiang
,
Q.
, and
Zhao
,
Y.
,
2019
, “
Health Monitoring and Safety Evaluation of the Offshore Wind Turbine Structure: A Review and Discussion of Future Development
,”
Sustainability
,
11
(
2
), p.
494
.
15.
Martinez-Luengo
,
M.
,
Kolios
,
A.
, and
Wang
,
L.
,
2016
, “
Structural Health Monitoring of Offshore Wind Turbines: A Review Through the Statistical Pattern Recognition Paradigm
,”
Renewable Sustainable Energy Rev.
,
64
, pp.
91
105
.
16.
Stetco
,
A.
,
Dinmohammadi
,
F.
,
Zhao
,
X.
,
Robu
,
V.
,
Flynn
,
D.
,
Barnes
,
M.
,
Keane
,
J.
, and
Nenadic
,
G.
,
2019
, “
Machine Learning Methods for Wind Turbine Condition Monitoring: A Review
,”
Renewable Energy
,
133
, pp.
620
635
.
17.
Thöns
,
S.
,
Faber
,
M. H.
, and
Val
,
D. V.
,
2017
, “
On the Value of Structural Health Monitoring Information for the Operation of Wind Parks
,”
Proceedings of the Safety, Reliability, Risk, Resilience and Sustainability of Structures and Infrastructure, 12th International Conference on Structural Safety and Reliability
,
Vienna, Austria
,
Aug. 6–10
,
C.
Bucher
,
B. R.
Ellingwood
, and
D. M.
Frangopol
, eds.,
TU Verlag
, pp.
3008
30017
.
18.
Long
,
L.
,
Mai
,
Q. A.
,
Morato
,
P. G.
,
Sørensen
,
J. D.
, and
Thöns
,
S.
,
2020
, “
Information Value-Based Optimisation of Structural and Environmental Monitoring for Offshore Wind Turbines Support Structures
,”
Renewable Energy
,
159
, pp.
1036
1046
.
19.
Nielsen
,
J. S.
, and
Sørensen
,
J. D.
,
2021
, “
Risk-Based Derivation of Target Reliability Levels for Life Extension of Wind Turbine Structural Components
,”
Wind Energy
,
24
(
9
), pp.
939
956
.
20.
Chaves-Schwinteck
,
P.
,
2013
,
The Modern Portfolio Theory Applied to Wind Farm Investments
,
Ph.D. thesis, Universität Oldenburg
.
21.
Dunlop
,
J.
,
2004
, “
Modern Portfolio Theory Meets Wind Farms
,”
J. Priv. Equity
,
7
(
2
), pp.
83
95
.
22.
Drake
,
B.
, and
Hubacek
,
K.
,
2007
, “
What to Expect From a Greater Geographic Dispersion of Wind Farms?—A Risk Portfolio Approach
,”
Energy Policy
,
35
(
8
), pp.
3999
4008
.
23.
Roques
,
F.
,
Hiroux
,
C.
, and
Saguan
,
M.
,
2010
, “
Optimal Wind Power Deployment in Europe—A Portfolio Approach
,”
Energy policy
,
38
(
7
), pp.
3245
3256
.
24.
Thomaidis
,
N.
,
Santos-Alamillos
,
F.
,
Pozo-Vázquez
,
D.
, and
Usaola-García
,
J.
,
2016
, “
Optimal Management of Wind and Solar Energy Resources
,”
Comput. Oper. Res.
,
66
, pp.
284
291
.
25.
Yeter
,
B.
, and
Garbatov
,
Y.
,
2021
, “
Optimal Life Extension Management of Offshore Wind Farms Based on the Modern Portfolio Theory
,”
Oceans
,
2
(
3
), pp.
566
582
.
26.
Levitt
,
A. C.
,
Kempton
,
W.
,
Smith
,
A. P.
,
Musial
,
W.
, and
Firestone
,
J.
,
2011
, “
Pricing Offshore Wind Power
,”
Energy Policy
,
39
(
10
), pp.
6408
6421
.
27.
Blanco
,
M. I.
,
2009
, “
The Economics of Wind Energy
,”
Renewable Sustainable Energy Rev.
,
13
(
6–7
), pp.
1372
1382
.
28.
Rombauts
,
Y.
,
Delarue
,
E.
, and
D'haeseleer
,
W.
,
2011
, “
Optimal Portfolio-Theory-Based Allocation of Wind Power: Taking Into Account Cross-Border Transmission-Capacity Constraints
,”
Renewable Energy
,
36
(
9
), pp.
2374
2387
.
29.
Chupp
,
B.
,
Hickey
,
E.
, and
Loomis
,
D.
,
2012
, “
Optimal Wind Portfolios in Illinois
,”
Electr. J.
,
25
(
1
), pp.
46
56
.
30.
Costa-Silva
,
L.
,
Almeida
,
V.
,
Pimenta
,
F.
, and
Segantini
,
G.
,
2017
, “
Time Span Does Matter for Offshore Wind Plant Allocation With Modern Portfolio Theory
,”
Int. J. Energy Econ. Policy
,
7
(
3
), pp.
188
193
.
31.
Hu
,
J.
,
Harmsen
,
R.
,
Crijns-Graus
,
W.
, and
Worrell
,
E.
,
2019
, “
Geographical Optimisation of Variable Renewable Energy Capacity in China Using Modern Portfolio Theory
,”
Appl. Energy
,
253
, p.
113614
.
32.
Marrero
,
G.
,
Puch
,
L.
, and
Ramos-Real
,
F.
,
2015
, “
Mean-Variance Portfolio Methods for Energy Policy Risk Management
,”
Int. Rev. Econ. Financ.
,
40
, pp.
246
264
.
33.
Arnesano
,
M.
,
Carlucci
,
A. P.
, and
Laforgia
,
D.
,
2012
, “
Extension of Portfolio Theory Application to Energy Planning Problem—The Italian Case
,”
Energy
,
39
(
1
), pp.
112
124
.
34.
Cunha
,
J.
, and
Ferreira
,
P. V.
,
2014
, “
Designing Electricity Generation Portfolios Using the Mean-Variance Approach
,”
Int. J. Sustain. Energy Plan. Manag.
,
4
, pp.
17
30
.
35.
deLlano-Paz
,
F.
,
Calvo-Silvosa
,
A.
,
Antelo
,
S.
, and
Soares
,
I.
,
2017
, “
Energy Planning and Modern Portfolio Theory: A Review
,”
Renewable Sustainable Energy Rev.
,
77
, pp.
636
651
.
36.
Yeter
,
B.
,
Garbatov
,
Y.
, and
Guedes Soares
,
C.
,
2018
, “Probabilistic Life-Cycle Assessment for Offshore Wind Turbines,”
Maritime Transportation and Harvesting of Sea Resources
,
C.
Guedes Soares
, and
A.
Teixeira
, eds.,
Taylor & Francis Group
,
London
, pp.
1229
1237
.
37.
Markowitz
,
H. M.
,
1952
, “
Portfolio Selection
,”
J. Finance
,
7
(
1
), pp.
77
91
.
38.
Sharpe
,
W. F.
,
1966
, “
Mutual Fund Performance
,”
J. Bus.
,
39
(
1
), pp.
119
138
.
You do not currently have access to this content.