Abstract

Ship waves could alter the hydrodynamic field and play an important role for sediment movement and morphological changes, especially in shallow water regions of inland waterways. However, the response of riverbed morphology to ship waves is still unclear. In this paper, the impacts of ship waves on the bed profile in inland waterways are investigated by means of laboratory experiments. Observations of ship waves and bed profile changes exposed to different ship wave conditions are conducted. There exists a power exponential relationship between the corresponding polygon area and perimeter of the cross-sectional bed profile after the action of ship waves, which indicates that the bed profile is only adjusted in the geometric direction. Moreover, the dimensionless local scour depth is well predicted through the dimensionless expression of ship-induced near-bed velocity, ship draft, and offshore distance, which describes the impacts of ship waves on the bed morphology in inland waterways.

References

1.
De Roo
,
S.
, and
Troch
,
P.
,
2013
, “
Field Monitoring of Ship Wave Action on Environmentally Friendly Bank Protection in a Confined Waterway
,”
J. Waterw. Port Coastal Ocean Eng.
,
139
(
6
), pp.
527
534
.
2.
Fleit
,
G.
,
Baranya
,
S.
,
Krámer
,
T.
,
Bihs
,
H.
, and
Józsa
,
J.
,
2019
, “
A Practical Framework to Assess the Hydrodynamic Impact of Ship Waves on River Banks
,”
River Res. Appl.
,
35
(
9
), pp.
1428
1442
.
3.
Bellafiore
,
D.
,
Zaggia
,
L.
,
Broglia
,
R.
,
Ferrarin
,
C.
,
Barbariol
,
F.
,
Zaghi
,
S.
,
Lorenzetti
,
G.
,
Manfe
,
G.
,
De Pascalis
,
F.
, and
Benetazzo
,
A.
,
2018
, “
Modeling Ship-Induced Waves in Shallow Water Systems: The Venice Experiment
,”
Ocean Eng.
,
155
, pp.
227
239
.
4.
Ulm
,
M.
,
Niehüser
,
S.
,
Kondziella
,
B.
,
Arns
,
A.
, and
Uliczka
,
K.
,
2020
, “
Field Measurements in the Kiel Canal, Germany: Ship Waves, Drawdown and Sediment Transport
,”
J. Waterw. Port Coastal Ocean Eng.
,
146
(
4
), p.
04020020
.
5.
Rapaglia
,
J.
,
Zaggia
,
L.
,
Ricklefs
,
K.
,
Gelinas
,
M.
, and
Bokuniewicz
,
H.
,
2011
, “
Characteristics of Ships’ Depression Waves and Associated Sediment Resuspension in Venice Lagoon, Italy
,”
J. Mar. Syst.
,
85
(
1–2
), pp.
45
56
.
6.
Fleit
,
G.
, and
Baranya
,
S.
,
2021
, “
Acoustic Measurement of Ship Wave-Induced Sediment Resuspension in a Large River
,”
J. Waterw. Port Coastal Ocean Eng.
,
147
(
2
), p.
04021001
.
7.
Gabel
,
F.
,
Lorenz
,
S.
, and
Stoll
,
S.
,
2017
, “
Effects of Ship-Induced Waves on Aquatic Ecosystems
,”
Sci. Total Environ.
,
601
, pp.
926
939
.
8.
Li
,
Z. S.
,
Wu
,
W.
,
Chen
,
H.
, and
Liu
,
H.
,
2016
, “
Numerical Simulation of Run-Up of Ship Waves on Slope Bank in Channel
,”
Chin. J. Hydrodyn.
,
31
(
5
), pp.
556
566
.
9.
Zhuo
,
M. Q.
,
Xu
,
J. S.
, and
Zhu
,
Z. X.
,
2019
, “
Numerical Modeling of Ship Waves in Shallow Water Channel
,”
Chin. J. Hydrodyn.
,
34
(
1
), pp.
67
72
.
10.
Nanson
,
G. C.
,
Krusenstierna
,
A. V.
, and
Bryant
,
E. A.
,
1994
, “
Experimental Measurements of River-Bank Erosion Caused by Boat-Generated Waves on the Gordon River, Tasmania
,”
Regul. Rivers Res. Manage.
,
9
(
1
), pp.
1
14
.
11.
Bauer
,
B. O.
,
Lorang
,
M. S.
, and
Sherman
,
D. J.
,
2002
, “
Estimating Boat-Wake-Induced Levee Erosion Using Sediment Suspension Measurements
,”
J. Waterw. Port Coastal Ocean Eng.
,
128
(
4
), pp.
152
162
.
12.
Houser
,
C.
,
2011
, “
Sediment Resuspension by Vessel-Generated Waves Along the Savannah River, Georgia
,”
J. Waterw. Port Coastal Ocean Eng.
,
137
(
5
), pp.
246
257
.
13.
Göransson
,
G.
,
Larson
,
M.
, and
Althage
,
J.
,
2014
, “
Ship-Generated Waves and Induced Turbidity in the Göta Älv River in Sweden
,”
J. Waterw. Port Coastal Ocean Eng.
,
140
(
3
), p.
04014004
.
14.
Liedermann
,
M.
,
Tritthart
,
M.
,
Gmeiner
,
P.
,
Hinterleitner
,
M.
,
Schludermann
,
E.
,
Keckeis
,
H.
, and
Habersack
,
H.
,
2014
, “
Typification of Vessel-Induced Waves and Their Interaction With Different Bank Types, Including Management Implications for River Restoration Projects
,”
Hydrobiologia
,
729
(
1
), pp.
17
31
.
15.
Duró
,
G.
,
Crosato
,
A.
,
Kleinhans
,
M. G.
,
Roelvink
,
D.
, and
Uijttewaal
,
W.
,
2020
, “
Bank Erosion Processes in Regulated Navigable Rivers
,”
J. Geophys. Res. Earth Surf.
,
125
(
7
), p.
e2019JF005441
.
16.
Weber
,
A.
,
Zhang
,
J.
,
Nardin
,
A.
,
Sukhodolov
,
A.
, and
Wolter
,
C.
,
2016
, “
Modelling the Influence of Aquatic Vegetation on the Hydrodynamics of an Alternative Bank Protection Measure in a Navigable Waterway
,”
River Res. Appl.
,
32
(
10
), pp.
2071
2080
.
17.
Torsvik
,
T.
,
2009
, “Modelling of Ship Waves From High-Speed Vessels,”
Applied Wave Mathematics
,
E.
Quak
, and
T.
Soomere
, eds.,
Springer
,
Berlin
, pp.
229
263
.
18.
Verney
,
R.
,
Deloffre
,
J.
,
Brun-Cottan
,
J. C.
, and
Lafite
,
R.
,
2007
, “
The Effect of Wave-Induced Turbulence on Intertidal Mudflats: Impact of Boat Traffic and Wind
,”
Cont. Shelf Res.
,
27
(
5
), pp.
594
612
.
19.
Luca
,
Z.
,
Giuliano
,
L.
,
Giorgia
,
M.
,
Marco
,
S. G.
,
Emanuela
,
M.
,
Ellis
,
P. K.
,
Rapaglia
,
J. P.
,
Gionta
,
M.
, and
Soomere
,
T.
,
2017
, “
Fast Shoreline Erosion Induced by Ship Wakes in a Coastal Lagoon: Field Evidence and Remote Sensing Analysis
,”
PLoS One
,
12
(
10
), p.
e0187210
.
20.
Stevens
,
R. L.
, and
Ekermo
,
S.
,
2003
, “
Sedimentation and Erosion in Connection With Ship Traffic, Gteborg Harbour, Sweden
,”
Environ. Geol.
,
43
(
4
), pp.
466
475
.
21.
De Roo
,
S.
,
Vanhaute
,
L.
, and
Troch
,
P.
,
2012
, “
Impact of Ship Waves on the Sediment Transport in a Nature Friendly Bank Protection
,”
Proceedings of the International Conference on Fluvial Hydraulics
,
San Jose, Costa Rica
,
Sept. 5–7
, pp.
1309
1316
.
22.
Cao
,
J.
,
Hou
,
Z.
,
Guo
,
Z.
,
Guo
,
D.
, and
Tang
,
P.
,
2020
, “
An Application of Fractal Theory to Complex Macrostructure: Quantitatively Characterization of Segregation Morphology
,”
ISIJ Int.
,
60
(
6
), pp.
1188
1195
.
23.
Jing
,
Z. H.
,
1990
, “
Navigation of the Canal and Revetment Engineering
,”
J. Sediment Res.
, (
1
), pp.
55
60
.
24.
Rady
,
E. H.
,
2020
, “
Prediction of Local Scour Around Bridge Piers: Artificial-Intelligence-Based Modeling Versus Conventional Regression Methods
,”
Appl. Water Sci.
,
10
(
2
), p.
57
.
25.
Nielsen
,
A. W.
, and
Hansen
,
E. A.
,
2009
, “
Time-Varying Wave and Current-Induced Scour Around Offshore Wind Turbines
,”
Proceeding of the 26th International Conference on Offshore Mechanics and Arctic Engineering
,
San Diego, CA
,
June 10–15, 2007
, pp.
399
408
, ASME Paper No. OMAE2007-29028.
26.
Mao
,
L. L.
, and
Chen
,
Y. M.
,
2020
, “
Investigation of Ship-Induced Hydrodynamics and Sediment Suspension in a Heavy Shipping Traffic Waterway
,”
J. Mar. Sci. Eng.
,
8
(
6
), p.
424
.
You do not currently have access to this content.