Abstract

This paper presents wind speed shear exponents and turbulence intensity (TI) measurements collected from light imaging, detection, and ranging instruments (LiDARs) measuring wind speeds from 40 m to 200 m above sea level and provides comparisons to industry design guidelines. The high-altitude wind speed data are unique and represent some of the first measurements made offshore in this part of the country, which is actively being developed for offshore wind. The data are used to support the New England Aqua Ventus I Floating Offshore Wind Farm to be located 17 km offshore the Northeast United States. Multiple LiDAR measurements were made using a DeepCLiDAR floating buoy and LiDARs located on a nearby island. The measured wind speed shear exponents are compared against industry standard mesoscale model outputs and offshore design codes including the American Bureau of Shipping, American Petroleum Institute, and Det Norske Veritas-Germanischer Lloyd guides. Significant variation in the vertical wind speed profile occurs throughout the year which is not addressed in design standards. Additionally, TI measurements made from the LiDAR, although not widely accepted in the scientific community, are presented and compared against industry guidelines.

References

1.
Newman
,
R.
,
2016
,
Optimizing Lidar Wind Measurements From the DOE WindSentinel Buoys
,
Pacific Northwest National Laboratory
,
Richland, WA
.
2.
Schwartz
,
M.
,
Heimiller
,
D.
,
Haymes
,
S.
, and
Musial
,
W.
,
2010
,
Assessment of Offshore Wind Energy Resources for the United States
,
National Renewable Energy Laboratory
,
Golden, CO
.
3.
AWS Truewind, LLC
,
2010
,
New York’s Offshore Wind Energy Development Potential in the Great Lakes: Feasibility Study
,
Albany, NY
.
4.
Viselli
,
A.
,
Forristall
,
G.
,
Pearce
,
B.
, and
Dagher
,
H.
,
2015
, “
Estimation of Extreme Wave and Wind Design Parameters for Offshore Wind Turbines in the Gulf of Maine Using a POT Method
,”
Ocean Eng.
,
104
, pp.
649
658
.
5.
Pichugina
,
Y. L.
,
Banta
,
R. M.
,
Brewer
,
W. A.
,
Sandberg
,
S. P.
, and
Hardesty
,
R. M.
,
2012
, “
Doppler Lidar-Based Wind-Profile Measurement System for Offshore Wind-Energy and Other Marine Boundary Layer Applications
,”
J. Appl. Meteorol. Climatol.
,
51
(
2
), pp.
327
349
.
6.
Lange
,
B.
,
Larsen
,
S.
,
Højstrup
,
J.
, and
Barthelmie
,
R. J.
,
2004
, “
Importance of Thermal Effects and Sea Surface Roughness for Wind Resource and Wind Shear at Offshore Sites
,”
Wind Eng. Ind. Aerodyn.
,
92
(
9
), pp.
959
988
.
7.
Pena Diaz
,
A.
,
Gryning
,
S.-E.
,
Mikkelsen
,
T. K.
,
Hasager
,
C. B.
, and
Kelly
,
M. C.
,
2012
, “
The Modeling and Observation of the Long-Term Vertical Wind Profile and Wind Shear
,”
Proceedings of EWEA 2012—European Wind Energy Conference & Exhibition European Wind Energy Association (EWEA)
,
Copenhagen, Denmark
,
Apr. 16–19
.
8.
Pena Diaz
,
A.
,
Mikkelsen
,
T. K.
,
Gryning
,
S.-E.
,
Hasager
,
C. B.
,
Hahmann
,
A. N.
,
Badger
,
M.
,
Karagali
,
I.
, and
Courtney
,
M.
,
2012
, “
Offshore Vertical Wind Shear: Final Report on NORSEWInD’s Work Task 3.1
,”
DTU Wind Energy, Kongens Lyngby
,
Denmark
.
9.
DNV
,
2010
,
DNV-RP-C205—Environmental Conditions and Environmental Loads
,
Det Norske Veritas
,
Oslo
.
10.
IEC
,
2009
,
International Standard IEC 61400-03
, 1st ed.,
International Electrotechnical Commission
,
Geneva
.
11.
Øistad
,
I. S.
,
2015
,
Analysis of the Turbulence Intensity at Skipheia Measurement Station
,
Norwegian University of Science and Technology
,
Trondheim
.
12.
Argyle
,
P.
,
Watson
,
S.
,
Montavon
,
C.
,
Jones
,
I.
, and
Smith
,
M.
,
2015
,
Turbulence Intensity Within Large Offshore Wind Farms
,
European Wind Energy Association
,
Paris
.
13.
ABS
,
2020
,
Guide for Building and Classing Floating Offshore Wind Turbine Installations
,
American Bureau of Shipping
,
Houston, TX
.
14.
ASCE
,
2010
,
Minimum Design Loads for Buildings and Other Structures
,
American Society of Civil Engineers
,
Reston, VA
.
15.
Viselli
,
A.
,
Filippelli
,
M.
,
Pettigrew
,
N.
, and
Dagher
,
H.
,
2018
, “
Validation of a LiDAR Wind Resource Assessment Buoy System in US Northeast Waters Against a Fixed Land-Based LiDAR System
,”
Wind Energy J.
,
22
, pp.
1548
1562
. DOI: 10.1002/we.2387
16.
Pettigrew
,
N.
,
Xue
,
H.
,
Irish
,
J.
,
Perrie
,
W.
,
Roesler
,
C.
,
Thomas
,
A.
, and
Townsend
,
D.
,
2008
, “
The Gulf of Maine Ocean Observing System: Generic Lessons Learned in the First Seven Years of Operation (2001–2008)
,”
MTS J.
,
43
(
3
), pp.
91
102
.
17.
Sathe
,
A.
,
Mann
,
J.
,
Vasiljevic
,
N.
, and
Lea
,
G.
,
2015
, “
A Six-Beam Method to Measure Turbulence Statistics Using Ground-Based Wind LiDARS
,”
Atmos. Meas. Technol.
,
8
(
2
), pp.
729
740
.
18.
Sathe
,
A.
,
Mann
,
J.
,
Gottschall
,
J.
, and
Courtney
,
M.
,
2011
, “
Can Wind LiDARs Measure Turbulence?
,”
J. Atmos. Ocean Technol.
,
28
(
7
), pp.
853
868
.
19.
Newman
,
J. F.
,
Bonin
,
T. A.
,
Klein
,
P. M.
,
Wharton
,
S.
, and
Newsom
,
R. K.
,
2016
, “
Testing and Validation of Multi-LiDAR Scanning Strategies for Wind Energy Applications
,”
Wind Energy J.
,
19
(
12
), pp.
2239
2254
.
20.
American Petroleum Institute
,
2014
,
Derivation of Metocean Design and Operating Conditions
,
API Publishing Services
,
Washington, DC
.
21.
Spera
,
David
, PhD
,
2009
,
Wind Turbine Technology Fundamental Concepts of Wind Turbine Engineering
, 2nd ed.,
ASME
,
New York
, pp.
488
492
.
22.
Van Wijk
,
A. J. M.
,
Beljaars
,
A. C. M.
,
Holtslag
,
A. A. M.
, and
Turkenburg
,
W. C.
,
1990
, “
Evaluation of Stability Corrections in Wind Speed Profiles Over the North Sea
,”
J. Wind Eng. Ind. Aerodyn.
,
33
(
3
), pp.
551
566
.
You do not currently have access to this content.