Abstract

A series of physical tests and finite element (FE) analyses are conducted to evaluate the failure of smooth (conventional) and textured (proposed concept) pipes. To do so, hydrostatic pressure tests are performed on aluminum beverage cans (ductile failure) and additively manufactured Ti6Al4V-0406 titanium pipes (brittle failure). Mechanical material properties are obtained from tensile tests of coupon samples. In the absence of physical burst pressure tests, FE models are validated against experimental results of external pressure tests and are used to predict the buckle initiation (Pi) and burst pressure (Pb) capacity of the textured pipes with different number of circumferential triangles, N, and base angles, α. Results show that buckle initiation pressures of the textured concept is 2.34 and 1.80 times greater than those of the smooth aluminum cans and titanium pipes, respectively. However, the burst pressure of the textured pipe can only get 3% greater than the smooth pipe. Based on the current results, a textured pipe with N = 6 and α = 30 deg is the optimum textured design.

References

1.
Zhang
,
G.
,
Qu
,
H.
,
Chen
,
G.
,
Zhao
,
C.
,
Zhang
,
F.
,
Yang
,
H.
, and
Ma
,
M.
,
2019
, “
Giant Discoveries of Oil and Gas Fields in Global Deepwaters in the Past 40 Years and the Prospect of Exploration
,”
J. Nat. Gas Geosci.
,
4
(
1
), pp.
1
28
.
2.
Close
,
F.
,
McCavitt
,
R. D.
, and
Smith
,
B.
,
2008
, “
Deepwater Gulf of Mexico Development Challenges Overview
,”
SPE North Africa Technical Conference & Exhibition
, January, OnePetro,
Society of Petroleum Engineers
.
3.
Hayes
,
J.
,
2012
, “
Operator Competence and Capacity–Lessons From the Montara Blowout
,”
Safety Sci.
,
50
(
3
), pp.
563
574
.
4.
Langner
,
C. G.
,
1995
,
Design of Deepwater Pipelines
,
NASA STI/Recon Technical Report No. 95
.
5.
Jukes
,
P.
,
Eltaher
,
A.
,
Sun
,
J.
, and
Harrison
,
G.
,
2009
, “
Extra High-Pressure High-Temperature (XHPHT) Flowlines: Design Considerations and Challenges
,”
ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering
,
January
, Vol. 43437, pp.
469
478
.
6.
Bai
,
Y.
,
2001
,
Pipelines and Risers
,
Elsevier
,
New York
.
7.
Netto
,
T. A.
,
Ferraz
,
U. S.
, and
Estefen
,
S. F.
,
2005
, “
The Effect of Corrosion Defects on the Burst Pressure of Pipelines
,”
J. Constr. Steel Res.
,
61
(
8
), pp.
1185
1204
.
8.
Teixeira
,
A. P.
,
Soares
,
C. G.
,
Netto
,
T. A.
, and
Estefen
,
S. F.
,
2008
, “
Reliability of Pipelines With Corrosion Defects
,”
Int. J. Pressure Vessels Piping
,
85
(
4
), pp.
228
237
.
9.
Torselletti
,
E.
,
Vitali
,
L.
,
Bruschi
,
R.
, and
Collberg
,
L.
,
2003
, “
Minimum Wall Thickness Requirements for Ultra Deep-Water Pipelines
,”
ASME 2003 22nd International Conference on Offshore Mechanics and Arctic Engineering
,
Cancun, Mexico
,
January
,
American Society of Mechanical Engineers Digital Collection
, pp.
647
660
.
10.
Yeh
,
M. K.
, and
Kyriakides
,
S.
,
1988
, “
Collapse of Deepwater Pipelines
,”
ASME J. Energy Resour. Technol.
,
110
(
1
), pp.
1
11
.
11.
Pasqualino
,
I. P.
, and
Estefen
,
S. F.
,
2001
, “
A Nonlinear Analysis of the Buckle Propagation Problem in Deepwater Pipelines
,”
Int. J. Solids Struct.
,
38
(
46–47
), pp.
8481
8502
.
12.
Netto
,
T. A.
, and
Kyriakides
,
S.
,
2000
, “
Dynamic Performance of Integral Buckle Arrestors for Offshore Pipelines. Part I: Experiments
,”
Int. J. Mech. Sci.
,
42
(
7
), pp.
1405
1423
.
13.
Lee
,
L. H.
, and
Kyriakides
,
S.
,
2004
, “
On the Arresting Efficiency of Slip-on Buckle Arrestors for Offshore Pipelines
,”
Int. J. Mech. Sci.
,
46
(
7
), pp.
1035
1055
.
14.
Karampour
,
H.
,
Alrsai
,
M.
, and
Hall
,
W.
,
2019
, “
Efficiency of Carbon Fibre Buckle Arrestors for Subsea Pipelines
,”
ASME 2019 38th International Conference on Offshore Mechanics and Arctic Engineering
,
Glasgow, Scotland, UK
,
June
,
Vol. 58813
, p.
V05BT04A023
.
15.
Heerema
,
E. P.
,
2005
, “
Recent Achievements and Present Trends in
Deepwater Pipe-Lay Systems
,”
Offshore Technology Conference
,
January
, OnePetro.
16.
Karampour
,
H.
,
Albermani
,
F.
, and
Gross
,
J.
,
2013
, “
On Lateral and Upheaval Buckling of Subsea Pipelines
,”
Eng. Struct.
,
52
, pp.
317
330
.
17.
Karampour
,
H.
,
2018
, “
Effect of Proximity of Imperfections on Buckle Interaction in Deep Subsea Pipelines
,”
Marine Struct.
,
59
, pp.
444
457
.
18.
Albermani
,
F.
,
Khalilpasha
,
H.
, and
Karampour
,
H.
,
2011
, “
Propagation Buckling in Deep Sub-Sea Pipelines
,”
Eng. Struct.
,
33
(
9
), pp.
2547
2553
.
19.
Von Karman
,
T.
, and
Tsein
,
H. S.
,
2003
, “
The Buckling of Thin Cylindrical Shells Under Axial Compression
,”
J. Spacecraft Rockets
,
40
(
6
), pp.
898
907
.
20.
Miura
,
K.
,
1969
,
Proposition of Pseudo-Cylindrical Concave Polyhedral Shells
,
Institute of Space and Aeronautical Science, University of Tokyo
,
Tokyo
.
21.
Knapp
,
R. H.
, and
Le
,
T. T.
,
1998
, “
Polyhedrally Stiffened Shells for Undersea Pressure Hulls
,”
Int. J. Offshore Polar Eng.
,
8
(
3
).
22.
Khalilpasha
,
H.
, and
Albermani
,
F.
,
2013
, “
Textured Deep Subsea Pipelines
,”
Int. J. Mech. Sci.
,
68
, pp.
224
235
.
23.
Karampour
,
H.
,
Albermani
,
F.
, and
Major
,
P.
,
2015
, “
Interaction Between Lateral Buckling and
Propagation Buckling in Textured Deep Subsea Pipelines
,”
ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering
, Vol. 56499,
St. John's, Canada
,
American Society of Mechanical Engineers Digital Collection
, p. V003T02A079.
24.
Karampour
,
H.
, and
Albermani
,
F.
,
2016
, “
Buckle Interaction in Textured Deep Subsea Pipelines
,”
Ships Offshore Struct.
,
11
(
6
), pp.
625
635
.
25.
Nikoo
,
H. M.
,
Bi
,
K.
, and
Hao
,
H.
,
2020
, “
Textured Pipe-in-Pipe System: A Compound Passive Technique for Vortex-Induced Vibration Control
,”
Appl. Ocean Res.
,
95
, p.
102044
.
26.
Karampour
,
H.
,
Wu
,
Z.
,
Lefebure
,
J.
,
Jeng
,
D. S.
,
Etemad-Shahidi
,
A.
, and
Simpson
,
B.
,
2018
, “
Modelling of Flow Around Hexagonal and Textured Cylinders
,”
Proc. Inst. Civil Eng. Eng. Comput. Mech.
,
171
(
3
), pp.
99
114
.
27.
Alrsai
,
M.
,
Karampour
,
H.
, and
Albermani
,
F.
,
2018
, “
On Collapse of the Inner Pipe of a Pipe-in-Pipe System Under External Pressure
,”
Eng. Struct.
,
172
, pp.
614
628
.
28.
Binazir
,
A.
,
Karampour
,
H.
,
Sadowski
,
A. J.
, and
Gilbert
,
B. P.
,
2019
, “
Pure Bending of Pipe-in-Pipe Systems
,”
Thin-Walled Struct.
,
145
, p.
106381
.
29.
Li
,
Z.
,
Tang
,
Y.
,
Tang
,
F.
,
Chen
,
Y.
, and
Chen
,
G.
,
2018
, “
Elastic Buckling of Thin-Walled Polyhedral Pipe Liners Encased in a Circular Pipe Under Uniform External Pressure
,”
Thin-Walled Struct.
,
123
, pp.
214
221
.
30.
Yang
,
K.
,
Xu
,
S.
,
Shen
,
J.
,
Zhou
,
S.
, and
Xie
,
Y. M.
,
2016
, “
Energy Absorption of Thin-Walled Tubes With Pre-Folded Origami Patterns: Numerical Simulation and Experimental Verification
,”
Thin-Walled Struct.
,
103
, pp.
33
44
.
31.
Guo
,
Z.
,
Gattas
,
J.
,
Wang
,
S.
,
Li
,
L.
, and
Albermani
,
F.
,
2016
, “
Experimental and Numerical Investigation of Bulging Behaviour of Hyperelastic Textured Tubes
,”
Int. J. Mech. Sci.
,
115
, pp.
665
675
.
32.
Burgos
,
C. A.
,
Batista-Abreu
,
J. C.
,
Calabró
,
H. D.
,
Jaca
,
R. C.
, and
Godoy
,
L. A.
,
2015
, “
Buckling Estimates for Oil Storage Tanks: Effect of Simplified Modeling of the Roof and Wind Girder
,”
Thin-Walled Struct.
,
91
, pp.
29
37
.
33.
Johns
,
T. G.
,
Mesloh
,
R. E.
, and
Sorenson
,
J. E.
,
1978
, “
Propagating Buckle Arrestors for Offshore Pipelines
,”
ASME J. Pressure Vessel Technol.
,
100
(
2
), pp.
206
214
.
34.
Timoshenko
,
S. P.
, and
Gere
,
J. M.
,
2009
,
Theory of Elastic Stability
,
Courier Corporation
,
Mineola, MN
.
35.
Yeh
,
M. K.
, and
Kyriakides
,
S.
,
1986
, “
On the Collapse of Inelastic Thick-Walled Tubes Under External Pressure
,”
ASME J. Energy Resour. Technol.
,
108
(
1
), pp.
35
47
.
36.
Ansys®
.
Academic Research Mechanical, Release 18.1
, Help System, Coupled Field Analysis Guide, ANSYS, Inc.
37.
Gliszczynski
,
A.
, and
Kubiak
,
T.
,
2017
, “
Progressive Failure Analysis of Thin-Walled Composite Columns Subjected to Uniaxial Compression
,”
Compos. Struct.
,
169
, pp.
52
61
.
38.
Rafi
,
H. K.
,
Karthik
,
N. V.
,
Gong
,
H.
,
Starr
,
T. L.
, and
Stucker
,
B. E.
,
2013
, “
Microstructures and Mechanical Properties of Ti6Al4V Parts Fabricated by Selective Laser Melting and Electron Beam Melting
,”
J. Mater. Eng. Perform.
,
22
(
12
), pp.
3872
3883
.
39.
Kachanov
,
L.
,
1958
, “
On the Time to Failure Under Creep Conditions, Izv. AN SSSR
,”
Otd. Tekhn. Nauk
,
8
(
26–31
), p.
8
.
40.
RP, D.
,
2004
, F101, Corroded Pipelines, Practical Guidance, Recommended Practice (Det Norske Veritas, 2001).
You do not currently have access to this content.