Abstract

Flow assurance is an important aspect of deepwater pipeline design and operation since one of the critical issues is the eventual initiation and growth of hydrate or paraffin blockages under certain conditions. Another relevant problem is the incidence of inorganic scale deposition in oil well production tubes during operation. Offshore operators can obtain enormous benefits if information regarding the position and extent of an eventual blockage is available since mitigation measures can be optimized. This work deals with experimental and numerical simulations of an acoustic system to identify and measure blockages. The technique uses a short duration acoustic pulse that is injected into the pipe. When the pulse encounters an impedance discontinuity, a portion is reflected toward the acoustic source. The analysis of the measured signal reflections can provide valuable data related to the location and size of the blockages. An experimental setup with a steel pipe of 4 in. internal diameter and length of 100 m was developed to evaluate the suitability of the technique for gas pipelines. In parallel, finite element analyses were performed using the commercial software abaqus to simulate the same physical parameters. The experiments were numerically reproduced with good correlation proving the potential of the technique. Subsequently, a parametric study was carried out to examine the acoustic detection capability using different blockage types. Finally, a prototype of the acoustic reflectometry detection system was developed and tested in a full-scale onshore water-filled pipeline to show the feasibility of the method for detecting blockages.

References

1.
Thanh
,
N. X.
,
Hsieh
,
M.
, and
Philp
,
R. P.
,
1999
, “
Waxes and Asphaltenes in Crude Oils
,”
Org. Geochem.
,
30
(
2–3
), pp.
119
132
. 10.1016/S0146-6380(98)00208-3
2.
Datta
,
S.
, and
Sarkar
,
S.
,
2016
, “
A Review on Different Pipeline Fault Detection Methods
,”
J. Loss Prev. Process Ind.
,
41
, pp.
97
106
. 10.1016/j.jlp.2016.03.010
3.
Belvederesi
,
C.
, and
Dann
,
M. R.
,
2017
, “
Statistical Analysis of Failure Consequences for Oil and Gas Pipelines
,”
Int. J. Saf. Secur. Eng.
,
7
(
2
), pp.
103
112
. 10.2495/SAFE-V7-N2-103-112
4.
Papadopoulou
,
K. A.
,
Shamout
,
M. N.
,
Lennox
,
B.
,
Mackay
,
D.
,
Taylor
,
A. R.
,
Turner
,
J. T.
, and
Wang
,
X.
,
2008
, “
An Evaluation of Acoustic Reflectometry for Leakage and Blockage Detection
,”
Proc. Inst. Mech. Eng., Part C
,
222
(
6
), pp.
959
966
. 10.1243/09544062jmes873
5.
Olugboji
,
O. A.
,
2011
, “
Development of an Impact Monitoring System for Petroleum Pipelines
,”
AU J.T.
,
15
(
2
), pp.
115
120
.
6.
Qingqing
,
X.
,
Laibin
,
Z.
, and
Wei
,
L.
,
2013
, “
Acoustic Detection Technology for Gas Pipeline Leakage
,”
Process Saf. Environ. Prot.
,
91
(
4
), pp.
253
261
. 10.1016/j.psep.2012.05.012
7.
Liu
,
C.
,
Li
,
Y.
,
Fu
,
J.
, and
Liu
,
G.
,
2015
, “
Experimental Study on Acoustic Propagation-Characteristics-Based Leak Location Method for Natural Gas Pipelines
,”
Process Saf. Environ. Prot.
,
96
, pp.
43
60
. 10.1016/j.psep.2015.04.005
8.
Liu
,
C.
,
Li
,
Y.
,
Yan
,
Y.
,
Fu
,
J.
, and
Zhang
,
Y.
,
2015
, “
A New Leak Location Method Based on Leakage Acoustic Waves for Oil and Gas Pipelines
,”
J. Loss Prev. Process Ind.
,
35
, pp.
236
246
. 10.1016/j.jlp.2015.05.006
9.
Liu
,
C.
,
Li
,
Y.
,
Fang
,
L.
,
Han
,
J.
, and
Xu
,
M.
,
2017
, “
Leakage Monitoring Research and Design for Natural Gas Pipelines Based on Dynamic Pressure Waves
,”
J. Process Control
,
50
, pp.
66
76
. 10.1016/j.jprocont.2016.12.003
10.
Ren
,
L.
,
Jiang
,
T.
,
Jia
,
Z.
,
Li
,
D.
,
Yuan
,
C.
, and
Li
,
H.
,
2018
, “
Pipeline Corrosion and Leakage Monitoring Based on the Distributed Optical Fiber Sensing Technology
,”
Measurement
,
122
, pp.
57
65
. 10.1016/j.measurement.2018.03.018
11.
Wang
,
X.
,
Lewis
,
K. M.
,
Papadopoulou
,
K. A.
,
Lennox
,
B.
, and
Turner
,
J. T.
,
2012
, “
Detection of Hydrate and Other Blockages in Gas Pipelines Using Acoustic Reflectometry
,”
Proc. Inst. Mech. Eng., Part C
,
226
(
7
), pp.
1800
1810
. 10.1177/0954406211431029
12.
Shama
,
A. M.
,
El-Shaib
,
M. N.
,
Bady
,
A.
, and
Hotb
,
M. A.
,
2017
, “
Review of Leakage Detection Methods for Subsea Pipeline
,”
Conference: 17th International Congress of the International Maritime Association of the Mediterranean (IMAM 2017)
,
Lisbon, Portugal
,
Oct. 1
.
13.
Mohany
,
A.
,
2018
, “
A Review of Pipeline Monitoring and Periodic Inspection Methods
,”
Pipeline Sci. Technol.
,
2
(
3
), pp.
187
203
. 10.28999/2514-541X-2018-2-3-187-201
14.
Ghidaoui
,
M. S.
,
Zhao
,
M.
,
McInnis
,
D. A.
, and
Axworthy
,
D. H.
,
2005
, “
A Review of Water Hammer Theory and Practice
,”
ASME Appl. Mech. Rev.
,
58
(
1
), pp.
49
76
. 10.1115/1.1828050
15.
Murvay
,
P.
, and
Silea
,
I.
,
2102
, “
A Survey on Gas Leak Detection and Localization Techniques
,”
J. Loss Prev. Process Ind.
,
25
(
6
), pp.
966
973
. 10.1016/j.jlp.2012.05.010
16.
Wang
,
X.
,
Lennox
,
B.
, and
Short
,
G.
,
2010
, “
Operational Experience Using Acoustic Reflectometry to Detect Blockages in Gas Pipelines
,”
Society of Petroleum Engineers
,
Abu Dhabi, UAE
,
Jan. 1
.
17.
Aldughayem
,
O. A.
,
2018
, “
Acoustic Pulse Reflectometry for Potential Industrial Applications
,”
Doctoral dissertation
,
The University of Manchester (UK)
.
18.
Forbes
,
B. J.
,
Sharp
,
D. B.
,
Kemp
,
J. A.
, and
Li
,
A.
,
2013
, “
Singular System Methods in Acoustic Pulse Reflectometry
,”
Acta Acust. United Acust.
,
89
(
5
), pp.
743
753
. http://oro.open.ac.uk/2160/
19.
Albors
,
G. O.
,
Kyle
,
A. M.
,
Wodicka
,
G. R.
, and
Juan
,
E. J.
,
2007
, “
Computer Simulation Tool for Predicting Sound Propagation in Air-Filled Tubes With Acoustic Impedance Discontinuities
,”
Proceedings of the 29th Annual International Conference of the IEEE EMBS
,
Lyon, France
,
Aug. 23
.
20.
Chen
,
X.
,
Ying Tsang
,
S. P. E.
,
Zhang
,
H. Q.
, and
Chen
,
T. X.
,
2007
, “
Pressure-Wave Propagation Technique for Blockage Detection in Subsea Flowlines
,”
SPE Annual Technical Conference and Exhibition
,
Anaheim, CA.
,
Jan. 1
.
21.
Tolstoy
,
A.
,
Horoshenkov
,
K. V.
, and
Bin Ali
,
M. T.
,
2009
, “
Detecting Pipe Changes via Acoustic Matched Field Processing
,”
Appl. Acoust.
,
70
(
5
), pp.
695
702
. 10.1016/j.apacoust.2008.08.007
22.
Liu
,
C.
,
Li
,
Y.
,
Fang
,
L.
, and
Xu
,
M.
,
2017
, “
Experimental Study on a De-Noising System for Gas and Oil Pipelines Based on an Acoustic Leak Detection and Location Method
,”
Int. J. Pressure Vessels Piping
,
151
, pp.
20
34
. 10.1016/j.ijpvp.2017.02.001
23.
Hovem
,
J. M.
,
2007
, “
Underwater Acoustics: Propagation, Devices and Systems
,”
J. Electroceram.
,
19
(
4
), pp.
339
347
. 10.1007/s10832-007-9059-9
24.
Harris
,
N. R.
,
Hill
,
M.
, and
Turner
,
J. D.
,
1997
, “
Practical Aspects of Modal Propagation Through Water Filled Pipes
,”
Ultrasonics
,
35
(
1
), pp.
73
78
. 10.1016/S0041-624X(96)00092-3
25.
Shin
,
Y. W.
,
Kim
,
M. S.
, and
Lee
,
S. K.
,
2010
, “
Identification of Acoustic Wave Propagation in a Duct Line and Its Application to Detection of Impact Source Location Based on Signal Processing
,”
J. Mech. Sci. Technol.
,
24
(
12
), pp.
2401
2241
. 10.1007/s12206-010-0910-6
26.
Owowo
,
J.
, and
Oyadiji
,
S. O.
,
2017
, “
Finite Element Analysis and Experimental Measurement of Acoustic Wave Propagation for Leakage Detection in an Air-Filled Pipe
,”
Int. J. Struct. Integr.
,
8
(
4
), pp.
452
467
. 10.1108/IJSI-12-2015-0061
27.
Abdullahi
,
M.
, and
Oyadiji
,
S. O.
,
2020
, “
Simulation and Detection of Blockage in a Pipe Under Mean Fluid Flow Using Acoustic Wave Propagation Technique
,”
Struct. Control Health Monit.
,
27
(
4
), pp.
1
40
. 10.1002/stc.2449
28.
Owowo
,
J.
,
2016
, “
Simulation, Measurement and Detection of Leakage and Blockage in Fluid Pipeline Systems
,”
Doctoral dissertation
,
The University of Manchester (UK)
.
29.
Datta
,
S.
,
Gautam
,
N. K.
, and
Sarkar
,
S.
,
2018
, “
Pipe Network Blockage Detection by Frequency Response and Genetic Algorithm Technique
,”
J. Water Supply: Res. Technol.—AQUA
,
67
(
6
), pp.
543
555
. 10.2166/aqua.2018.046
30.
Groves
,
K. H.
,
Aldughayem
,
O.
, and
Lennox
,
B.
,
2019
, “
Real-Time Active Suppression of Directional Acoustic Wave Components in Tubular Acoustic Systems
,”
J. Acoust. Soc. Am.
,
146
(
6
), pp.
4926
4935
. 10.1121/1.5138123
31.
Jing
,
L.
,
Li
,
Z.
,
Wang
,
W.
,
Dubey
,
A.
,
Lee
,
P.
,
Meniconi
,
S.
,
Brunone
,
B.
, and
Murch
,
R. D.
,
2018
, “
An Approximate Inverse Scattering Technique for Reconstructing Blockage Profiles in Water Pipelines Using Acoustic Transients
,”
J. Acoust. Soc. Am.
,
143
(
5
), pp.
EL322
EL327
. 10.1121/1.5036957
32.
Stephens
,
M.
,
Lambert
,
M.
,
Simpson
,
A.
, and
Vítkovský
,
J.
,
2004
, “
Field Tests for Leakage, Air Pocket, and Discrete Blockage Detection Using Inverse Transient Analysis in Water Distribution Pipes
,”
World Water and Environmental Resources Congress 2004
,
Salt Lake City, UT
,
June 27
.
33.
Giudice
,
S. D.
,
2014
, “
Acoustic Pipeline Monitoring: Theory and Technology
,”
Doctoral dissertation
,
Politecnico Di Milano
.
34.
Duan
,
W.
,
Gu
,
F.
,
Dupère
,
I.
,
Zhong
,
S.
, and
Ball
,
A.
,
2009
, “
The Effects of Blockage on the Propagation of Acoustic Waves in the Liquid Shell Coupled System
,”
Key Eng. Mater.
,
413–414
, pp.
327
333
. www.scientific.net/KEM.413-414.327
35.
Silva
,
L. L.
,
Monteiro
,
P. C. C.
,
Vidal
,
J. L. A.
, and
Netto
,
T. A.
,
2014
, “
Acoustic Reflectometry for Blockage Detection in Pipeline
,”
Proceedings of the 33th International Conference on Ocean, Offshore and Arctic Engineering
,
San Francisco, CA
,
Oct. 29
.
36.
Hibbitt
,
H.
,
Karlsson
,
B.
, and
Sorensen
,
P.
,
2006
,
Abaqus Analysis User's Manual v.6.10
, 1st ed., Vol.
II
,
Dassault Systèmes Simulia Corp
,
Providence, RI
, pp.
1
679
.
37.
Moser
,
F.
,
Jacobs
,
L. J.
, and
Qu
,
J.
,
1999
, “
Modeling Elastic Wave Propagation in Waveguides With the Finite Element Method
,”
NDT&E Int.
,
32
(
4
), pp.
225
234
. 10.1016/S0963-8695(98)00045-0
You do not currently have access to this content.