Abstract

Autonomous docking guidance is one of the key technologies to achieve the autonomous underwater vehicle (AUV) docking with the sub-sea docking station (DS) to realize long-term resident operation. In the process of AUV docking, the combination of long-distance acoustic guidance based on acoustic sensor and terminal visual guidance based on camera is often adopted. However, affected by the accuracy of the navigation sensor and acoustic positioning sensor carried by AUV, as well as the ocean current, AUV cannot accurately know its own position and the position of the DS, resulting in a large acoustic guidance error and the inability to enter the visual guidance stage with a reasonable deviation, thus leading to the docking failure. In this article, an improved FastSLAM algorithm is proposed to estimate the position of AUV and DS simultaneously. The positioning accuracy of traditional FastSLAM algorithm is affected by such factors as the estimation accuracy of the statistical characteristics of process noise. An improved algorithm for FastSLAM based on fuzzy Q-learning is proposed. The homing path is planned based on the Dubins theory. The path is tracked by line-of-sight guidance. The results of matlab simulation and experimental data analyzing of the portable AUV are applied to verify the effectiveness of the proposed algorithm.

References

1.
Zeng
,
J. B.
,
Li
,
S.
,
Li
,
Y. P.
,
Wang
,
X. H.
, and
Yan
,
S. X.
,
2016
, “
Research and Application of the Control System for a Portable Autonomous Underwater Vehicle
,”
Robot
,
38
(
1
), pp.
92
97
. 10.13973/j.cnki.robot.2016.0091
2.
Bi
,
A. Y.
,
Feng
,
Z. P.
, and
He
,
C. L.
,
2021
, “
Robust Hierarchical Hovering Control of Autonomous Underwater Vehicles Via Variable Ballast System
,”
ASME J. Offshore Mech. Arct. Eng
,
143
(
3
), p.
031401
. 10.1115/1.4048788
3.
Zheng
,
R.
,
Lv
,
H. Q.
,
Yu
,
C.
,
Han
,
X. J.
,
Li
,
M. Z.
, and
Wei
,
A. B.
,
2019
, “
Technical Research, System Design and Implementation of Docking Between AUV and Autonomous Mobile Dock Station
,”
Robot
,
41
(
6
), pp.
1
9
. 10.13973/j.cnki.robot.180753
4.
Fan
,
S. S.
,
Liu
,
C. Z
,
Li
,
B.
,
Xu
,
Y. X.
, and
Xu
,
W.
,
2018
, “
AUV Docking Based on USBL Navigation and Vision Guidance
,”
J. Mar. Sci. Tech-Japan
,
24
(
3
), pp.
673
685
. 10.1007/s00773-018-0577-8
5.
Guo
,
J.
,
Yan
,
W. S.
,
Xu
,
D. M.
, and
Liu
,
M. Y.
,
2012
, “
Homing Guidance and Docking Control Algorithm for Autonomous Underwater Vehicles
,”
CEA
,
48
(
3
), pp.
2
9
.
6.
Li
,
D. J.
,
Chen
,
Y. H.
,
Shi
,
J. G.
, and
Yang
,
C. J.
,
2015
, “
Autonomous Underwater Vehicle Docking System for Cabled Ocean Observatory Network
,”
Ocean. Eng
,
209
(
1
), pp.
127
134
. 10.1016/j.oceaneng.2015.08.029
7.
Yazdani
,
A. M
,
Sammut
,
K.
,
Lammas
,
A.
, and
Tang
,
Y.
,
2015
, “
Real-Time Quasi-Optimal Trajectory Planning for Autonomous Underwater Docking
,”
Proceedings of the IEEE IRIS Conference
,
Langkawi, Malaysia
,
Oct. 18–20
, pp.
15
20
.
8.
Yazdani
,
A. M
,
Sammut
,
K.
,
Yakimenko
,
O. A.
, and
Tang
,
Y.
,
2017
, “
IDVD-Based Trajectory Generator for Autonomous Underwater Docking Operations
,”
Robot. Auton. Syst
,
92
(
1
), pp.
12
29
. 10.1016/j.robot.2017.02.001
9.
Albert
,
S. M.
,
Kristin
,
Y. P.
,
Edmund
,
B.
, and
Vegard
,
F. H.
,
2016
, “
A Hybrid Approach to Underwater Docking of AUVs With Cross-Current
,”
Proceedings of the IEEE Oceans Conference
,
Monterey, CA
,
Sept. 19–23
. 10.1109/OCEANS.2016.7761213
10.
Ken
,
T.
, and
Edgar
,
A.
,
2012
, “
A Robust Fuzzy Autonomous Underwater Vehicle(AUV) Docking Approach for Unknown Current Disturbances
,”
IEEE J. Ocean. Eng
,
37
(
1
), pp.
143
155
. 10.1109/JOE.2011.2180058
11.
Jin
,
Y. P.
,
Bong
,
H. J.
,
Pan
,
M. L.
, and
Yong
,
K. L.
,
2011
, “
Modified Linear Terminal Guidance for Docking and a Time-Varying Ocean Current Observer
,”
Proceedings of the 2011 IEEE Symposium on Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies
,
Tokyo, Japan
,
Apr. 5–8
. 10.1109/UT.2011.5774141
12.
Bruno
,
M. F.
,
Anibal
,
C. M.
,
Nuno
,
A. C.
, and
Moreira
,
A. P.
,
2015
, “
Homing a Robot With Range-Only Measurements Under Unknown Drifts
,”
Robot. Auton. Syst
,
67
(
SI
), pp.
3
13
. 10.1016/j.robot.2014.09.035
13.
Guillem
,
V.
,
Pere
,
R.
,
David
,
R.
, and
Albert
,
P.
,
2014
, “
Active Range-Only Beacon Localization for AUV Homing
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Chicago, IL
,
Sept. 14–18
, pp.
2286
2291
. 10.1109/IROS.2014.6942871
14.
Vallicrosa
,
G.
,
Ridao
,
P.
, and
Ribas
,
D.
,
2015
, “
AUV Single Beacon Range-Only SLAM With a SOG Filter
,”
IFAC-PapersOnLine
,
48
(
2
), pp.
26
31
.
15.
Vallicrosa
,
G.
,
Bosch
,
J.
,
Palomeras
,
N.
,
Ridao
,
P.
,
Carreras
,
M.
, and
Gracias
,
N.
,
2016
, “
Autonomous Homing and Docking for AUVs Using Range-Only Localizations and Light Beacons
,”
Proceedings of the 10th IFAC Conference on Control Applications in Marine Systems CAMS 2016
,
Trondheim, Norway
,
Sept. 13–16
, pp.
54
60
. 10.1016/j.ifacol.2016.10.321
16.
Guillem
,
V.
, and
Pere
,
R.
,
2016
, “
Sum of Gaussian Single Beacon Range-Only Localization for AUV Homing
,”
Annu. Rev. Control
,
42
(
1
), pp.
177
187
. 10.1016/j.arcontrol.2016.09.007
17.
Li
,
Q. L.
,
Song
,
Y.
, and
Hou
,
Z. G.
,
2015
, “
Neural Network Based FastSLAM for Autonomous Robots in Unknown Environments
,”
Neurocomputing
,
165
(
1
), pp.
99
110
. 10.1016/j.neucom.2014.06.095
18.
Michael
,
M.
,
Sebastian
,
T.
,
Daphne
,
K.
, and
Ben
,
W.
,
2003
, “
FastSLAM 2.0: An Improved Particle Filtering Algorithm for Simultaneous Localization and Mapping That Provably Converges
,”
Proceedings of the International Conference on Artificial Intelligence
,
San Francisco, CA
,
June 25–28
, pp.
1151
1156
. 10.1007/s00214-013-1423-z
19.
Kai
,
A.
,
Marc
,
P. D.
,
Miles
,
B.
, and
Anil
,
A. B.
,
2017
, “
A Brief Survey of Deep Reinforcement Learning
,”
IEEE Signal Proc. Mag
,
34
(
1
), pp.
1
16
. 10.1109/MSP.2017.2743240
20.
Glorennec
,
P. Y.
, and
Jouffe
,
L.
,
1997
, “
Fuzzy Q-learning
,”
Proceedings of the 6th International Fuzzy Systems Conference
,
Barcelona, Spain
,
July 5
, pp.
659
662
. 10.1109/FUZZY.1997.622790
21.
Mnih
,
V.
,
Kavukcuoglu
,
K.
,
Silver
,
D.
,
Graves
,
A.
,
Antonohlou
,
I.
,
Wierstra
,
D.
, and
Riedmiller
,
M.
,
2013
, “
Playing Atari With Deep Reinforcement Learning
,” arXiv: 1312.5602.
22.
Hyungjun
,
P.
,
Min
,
K. S.
, and
Dong
,
G. C.
,
2020
, “
An Intelligent Financial Portfolio Trading Strategy Using Deep Q-learning
,”
Expert Syst. Appl.
,
158
(
1
), pp.
1
16
. 10.1016/j.eswa.2020.113573
23.
Koh
,
S. S.
,
Zhou
,
B.
,
Fang
,
H.
,
Yang
,
P.
,
Yang
,
Z. L.
,
Yang
,
Q.
,
Guan
,
L.
, and
Ji
,
Z.G.
,
2020
, “
Real-time Deep Reinforcement Learning Based Vehicle Navigation
,”
Appl. Soft Comput.
,
96
(
1
), pp.
1
15
. 10.1016/j.asoc.2020.106694
24.
Kofinas
,
P.
,
Dounis
,
A. I.
, and
Vouuros
,
G. A.
,
2018
, “
Fuzzy Q-Learning for Multi-Agent Decentralized Energy Management in Microgrids
,”
Appl. Energ
,
219
(
1
), pp.
53
67
. 10.1016/j.apenergy.2018.03.017
25.
Li
,
Y. C.
, and
Saripalli
,
S.
,
2014
, “
Path Planning Using 3D Dubins Curve for Unmanned Aerial Vehicles
,”
Proceedings of 2014 International Conference on Unmanned Aircraft Systems (ICUAS)
,
Orlando, FL
,
May 27–30
, pp.
296
304
. 10.1109/ICUAS.2014.6842268
You do not currently have access to this content.