Abstract

The gravity wave interaction with a flexible membrane placed at a finite distance from the partially reflecting seawall is analyzed under the framework of linear water wave theory using the multi-domain boundary element method (BEM). The flow through a flexible membrane is assumed to follow Darcy’s law in addition to membrane displacements. As a viable alternative to the existing wave dampers, the flexible membrane is examined for the effective dampening of incident waves. The correctness of the numerical results is affirmed with the known results available in the literature. The effect of membrane tension, submergence depth, membrane width, porosity, angle of inclination, and confined chamber spacing on hydrodynamic coefficients is discussed as a function of dimensionless wavenumber. The partially reflecting harbor wall diminishes the wave reflection coefficient in the long-wave regime. The increase in the flexible membrane width does not necessarily ensure the ideal wave capturing performance. A shift in the peak of the maximum deflection is observed with the increase of membrane width while there is a shift in peak outward for the increase in the submergence depth. Moreover, the maximum deflection is found to decrease with the increase in porosity, and it is 62% reduction for membrane porosity b = 1 due to the significant wave damping. The wave run-up and the wall force coefficients are found to be minimum when the relative plate width is B/h = 1. The present study is expected to be useful for the design of cost-effective wave attenuating systems.

References

1.
Kim
,
M. H.
, and
Kee
,
S. T.
,
1996
, “
Flexible-Membrane Wave Barrier. I: Analytic and Numerical Solutions
,”
J. Waterw. Port Coastal Ocean Eng.
,
122
(
1
), pp.
46
53
. 10.1061/(ASCE)0733-950X(1996)122:1(46)
2.
Isaacson
,
M.
, and
Qu
,
S.
,
1990
, “
Waves in a Harbour With Partially Reflecting Boundaries
,”
Coastal Eng.
,
14
(
3
), pp.
193
214
. 10.1016/0378-3839(90)90024-Q
3.
Essoglou
,
M.
,
Seymour
,
D.
, and
Berkley
,
J.
,
1975
, “
TFB: A Transportable Open Ocean Breakwater
,”
OCEAN 75 Conference
,
San Diego, CA
, pp.
723
725
.
4.
Isaacson
,
M.
, and
Byres
,
R.
,
1988
, “
Floating Breakwater Response to Wave Action
,”
Coastal Engineering Proceedings
,
Copenhagen, Denmark
, pp.
2189
2200
.
5.
Elchahal
,
G.
,
Younes
,
R.
, and
Lafon
,
P.
,
2008
, “
The Effects of Reflection Coefficient of the Harbour Sidewall on the Performance of Floating Breakwaters
,”
Ocean Eng.
,
35
(
11–12
), pp.
1102
1112
. 10.1016/j.oceaneng.2008.04.015
6.
Cheng
,
Y.
,
Ji
,
C.
,
Zhai
,
G.
, and
Gaidai
,
O.
,
2016
, “
Hydroelastic Analysis of Oblique Irregular Waves With a Pontoon-Type VLFS Edged With Dual Inclined Perforated Plates
,”
Mar. Struct.
,
49
, pp.
31
57
. 10.1016/j.marstruc.2016.05.008
7.
Praveen
,
K. M.
,
Venkateswarlu
,
V.
, and
Karmakar
,
D.
,
2020
, “
Hydroelastic Response of Floating Elastic Plate in the Presence of Vertical Porous Barriers
,”
Ships Offshore Struct.
, pp.
1
15
. 10.1080/17445302.2020.1835050
8.
Huang
,
B. L.
, and
Wang
,
S. C.
,
2017
, “
Wave Attenuation Mechanism of Cross-Plates Applied in Landslide-Induced Tsunami in River Course
,”
J. Mt. Sci.
,
14
(
4
), pp.
649
661
. 10.1007/s11629-016-4218-6
9.
Pontoon Breakwater
,
1948
, “
U.S. Navy Civil Engineer Corps Bulletin
,” Vol.
2
, No.
14
, pp.
10
13
.
10.
Patrick
,
D. A.
,
1951
, “
Model Study of Amphibious Breakwaters
,”
California California University Berkley Institute of Engineering Research
.
11.
Raichlen
,
F.
, and
Lee
,
J. J.
,
1978
, “
An Inclined-Plate Wave Generator
,”
Coastal Engineering Proceedings
,
Hamburg, Germany
, pp.
388
399
.
12.
Bayram
,
A.
,
2000
, “
Experimental Study of a Sloping Float Breakwater
,”
Ocean Eng.
,
27
(
4
), pp.
445
453
. 10.1016/S0029-8018(98)00080-8
13.
Kharaghani
,
S.
, and
Lee
,
J. J.
,
1986
, “
Wave Interaction With Moored Sloping Breakwater
,”
Coastal Engineering Proceedings
, pp.
2559
2568
.
14.
Murakami
,
H.
,
Itoh
,
S.
,
Hosoi
,
Y.
, and
Sawamura
,
Y.
,
1994
, “
Wave Induced Flow Around Submerged Sloping Plates
,”
Coastal Engineering Proceedings
,
Kobe, Japan
, pp.
1454
1468
.
15.
Nallayarasu
,
S.
,
Cheong
,
H. F.
, and
Shankar
,
N. J.
,
1994
, “
Wave Induced Pressures and Forces on a Fixed Submerged Inclined Plate
,”
Finite Elem. Anal. Des.
,
18
(
1–3
), pp.
289
299
. 10.1016/0168-874X(94)90108-2
16.
Cho
,
I. H.
, and
Kim
,
M. H.
,
2000
, “
Interactions of Horizontal Porous Flexible Membrane With Waves
,”
J. Waterw. Port Coastal Ocean Eng.
,
126
(
5
), pp.
245
253
. 10.1061/(ASCE)0733-950X(2000)126:5(245)
17.
Cho
,
I. H.
, and
Kim
,
M. H.
,
2008
, “
Wave Absorbing System Using Inclined Perforated Plates
,”
J. Fluid Mech.
,
608
, pp.
1
20
. 10.1017/S0022112008001845
18.
Cho
,
I. H.
,
Koh
,
H. J.
,
Kim
,
J. R.
, and
Kim
,
M. H.
,
2013
, “
Wave Scattering by Dual Submerged Horizontal Porous Plates
,”
Ocean Eng.
,
73
, pp.
149
158
. 10.1016/j.oceaneng.2013.08.008
19.
Berkhoff
,
J. C. W.
,
1976
, “
Mathematical Model for Simple Harmonic Water Wave Diffraction and Refraction
,”
Deft Hydraulics Laboratory
.
20.
Zhao
,
Y.
,
Liu
,
Y.
, and
Li
,
H.
,
2016
, “
Wave Interaction With a Partially Reflecting Vertical Wall Protected by a Submerged Porous Bar
,”
J. Ocean Univ. China
,
15
(
4
), pp.
619
626
. 10.1007/s11802-016-2837-8
21.
Venkateswarlu
,
V.
, and
Karmakar
,
D.
,
2019
, “
Wave Transformation Due to Barrier-Rock Porous Structure Placed on Step-Bottom
,”
Ships Offshore Struct.
,
15
(
8
), pp.
895
909.
. 10.1080/17445302.2019.1694296
22.
Mackay
,
E.
, and
Johanning
,
L.
,
2020
, “
Comparison of Analytical and Numerical Solutions for Wave Interaction With a Vertical Porous Barrier
,”
Ocean Eng.
,
199
, p.
107032
. 10.1016/j.oceaneng.2020.107032
23.
Venkateswarlu
,
V.
, and
Karmakar
,
D.
,
2020
, “
Significance of Seabed Characteristics on Wave Transformation in the Presence of Stratified Porous Block
,”
Coastal Eng. J.
,
62
(
1
), pp.
1
22
. 10.1080/21664250.2019.1676366
24.
Williams
,
A. N.
,
Geiger
,
P. T.
, and
McDougal
,
W. G.
,
1991
, “
Flexible Floating Breakwater
,”
J. Waterw. Port Coastal Ocean Eng.
,
117
(
5
), pp.
429
450
. 10.1061/(ASCE)0733-950X(1991)117:5(429)
25.
Guo
,
Y. C.
,
Mohapatra
,
S. C.
, and
Soares
,
C. G.
,
2020
, “
Wave Energy Dissipation of a Submerged Horizontal Flexible Porous Membrane Under Oblique Wave Interaction
,”
Appl. Ocean Res.
,
94
, p.
101948
. 10.1016/j.apor.2019.101948
26.
Yu
,
X.
, and
Chwang
,
A. T.
,
1994
, “
Water Waves Above Submerged Porous Plate
,”
J. Eng. Mech.
,
120
(
6
), pp.
1270
1282
. 10.1061/(ASCE)0733-9399(1994)120:6(1270)
27.
Yu
,
X.
,
2002
, “
Functional Performance of a Submerged and Essentially Horizontal Plate for Offshore Wave Control: A Review
,”
Coastal Eng. J.
,
44
(
2
), pp.
127
147
. 10.1142/S0578563402000470
28.
Cho
,
I. H.
, and
Kim
,
M. H.
,
1998
, “
Interactions of a Horizontal Flexible Membrane With Oblique Incident Waves
,”
J. Fluids Mech.
,
367
, pp.
139
161
. 10.1017/S0022112098001499
29.
Chwang
,
A. T.
,
1983
, “
A Porous-Wavemaker Theory
,”
J. Fluids Mech.
,
132
, pp.
395
406
. 10.1017/S0022112083001676
30.
Wu
,
J.
,
Wan
,
Z.
, and
Fang
,
Y.
,
1998
, “
Wave Reflection by a Vertical Wall With a Horizontal Submerged Porous Plate
,”
Ocean Eng.
,
25
(
9
), pp.
767
779
. 10.1016/S0029-8018(97)00037-1
31.
Sobhani
,
S. M.
,
Lee
,
J. J.
, and
Wellford Jr
,
L. C.
,
1988
, “
Interaction of Periodic Waves With Inclined Portable Barrier
,”
J. Waterw. Port Coastal Ocean Eng.
,
114
(
6
), pp.
745
761
. 10.1061/(ASCE)0733-950X(1988)114:6(745)
32.
Rao
,
S.
,
Shirlal
,
K. G.
,
Varghese
,
R. V.
, and
Govindaraja
,
K. R.
,
2009
, “
Physical Model Studies on Wave Transmission of a Submerged Inclined Plate Breakwater
,”
Ocean Eng.
,
36
(
15–16
), pp.
1199
1207
. 10.1016/j.oceaneng.2009.08.001
33.
Vijay
,
K. G.
, and
Sahoo
,
T.
,
2019
, “
Scattering of Surface Gravity Waves by a Pair of Floating Porous Boxes
,”
ASME J. Offshore Mech. Arct. Eng.
,
141
(
5
), p.
051803
. 10.1115/1.4043415
34.
Vijay
,
K. G.
,
Venkateswarlu
,
V.
, and
Karmakar
,
D.
,
2020
, “
Scattering of Gravity Waves by Multiple Submerged Rubble-Mound Breakwaters
,”
Arabian J. Sci. Eng.
,
45
(
10
), pp.
8529
8550
. 10.1007/s13369-020-04767-1
35.
Venkateswarlu
,
V.
, and
Karmakar
,
D.
,
2020
, “
Gravity Wave Trapping by Series of Horizontally Stratified Wave Absorbers Away From Seawall
,”
ASME J. Offshore Mech. Arct. Eng.
,
142
(
6
), p.
061201
. 10.1115/1.4047104
36.
Vijay
,
K. G.
,
Neelamani
,
S.
, and
Sahoo
,
T.
,
2019
, “
Wave Interaction With Multiple Slotted Barriers Inside Harbour: Physical and Numerical Modelling
,”
Ocean Eng.
,
193
, p.
106623
. 10.1016/j.oceaneng.2019.106623
37.
Bergmann
,
H.
, and
Oumeraci
,
H.
,
2000
, “
Wave Loads on Perforated Caisson Breakwaters
,”
Coastal Engineering Proceedings
,
Sydney, Australia
, pp.
1622
1635
.
You do not currently have access to this content.