Abstract

Focusing on the 75 m depth offshore area, an articulated foundation is proposed for supporting National Renewable Energy Laboratory (NREL) 5 MW offshore wind turbine (OWT). Through the overall sensitivity check on hydrostatic performance, the main parameters are set to meet the requirements of stability and economy. An in-house code was programmed to simulate the dynamic response of the articulated offshore wind turbine (AOWT). The aerodynamic load on rotating blades and the wind pressure load on tower are calculated based on the blade element momentum theory and the empirical formula, respectively. The hydrodynamic load is simulated by the three-dimensional potential flow theory. The motions of foundation, the aerodynamic performance of the wind turbine, and the loads on the articulated joint are documented in different cases. According to the simulations, the articulated offshore wind turbine shows feasibility to work in the particular area.

References

1.
Stock-Williams
,
C.
, and
Swamy
,
S. K.
,
2019
, “
Automated Daily Maintenance Planning for Offshore Wind Farms
,”
Renew. Energy
,
133
, pp.
1393
1403
. 10.1016/j.renene.2018.08.112
2.
Zhang
,
Y.
,
Zhang
,
J.
,
Lin
,
X.
,
Wang
,
R.
,
Zhang
,
C.
, and
Zhao
,
J.
,
2020
, “
Experimental Investigation Into Downstream Field of a Horizontal Axis Tidal Stream Turbine Supported by a Mono Pile
,”
Appl. Ocean Res.
,
101
, p.
102257
. 10.1016/j.apor.2020.102257
3.
Whiteman
,
A.
,
Sohn
,
H.
,
Esparrago
,
J.
,
Arkhipova
,
I.
, and
Elsayed
,
S.
,,
2018
,
Renewable Energy Statistics 2018
,
International Renewable Energy Agency
,
Abu Dhabi
.
4.
Li
,
L.
,
Liu
,
Y.
,
Yuan
,
Z.
, and
Gao
,
Y.
,
2019
, “
Dynamic and Structural Performances of Offshore Floating Wind Turbines in Turbulent Wind Flow
,”
Ocean Eng.
,
179
, pp.
92
103
. 10.1016/j.oceaneng.2019.03.028
5.
Lian
,
J.
,
Jiang
,
J.
,
Dong
,
X.
,
Zhou
,
H.
, and
Wang
,
P.
,
2019
, “
Coupled Motion Characteristics of Offshore Wind Turbine During the Integrated Transportation Process
,”
Energies
,
12
(
10
), p.
2023
, 1–23. 10.3390/en12102023
6.
Nagamani
,
K.
, and
Ganapathy
,
C.
,
1996
, “
Finite Element Analysis of Nonlinear Dynamic Response of Articulated Towers
,”
Comput. Struct.
,
59
(
2
), pp.
213
223
. 10.1016/0045-7949(95)00265-0
7.
Gavassoni
,
E.
,
Gonçalves
,
P. B.
, and
de Mesquita Roehl
,
D.
,
2015
, “
Nonlinear Vibration Modes of an Offshore Articulated Tower
,”
Ocean Eng.
,
109
, pp.
226
242
. 10.1016/j.oceaneng.2015.08.028
8.
Zaheer
,
M. M.
, and
Islam
,
N.
,
2017
, “
Dynamic Response of Articulated Towers Under Correlated Wind and Waves
,”
Ocean Eng.
,
132
, pp.
114
125
. 10.1016/j.oceaneng.2017.01.019
9.
Javed
,
S. Y.
,
2018
, “
Near Fault Effect on the Response of Single Hinged Compliant Offshore Tower
,”
MATEC Web of Conferences
, p.
01015
, Vol.
203
.
EDP Sciences
.
10.
Wu
,
H. T.
,
Zhang
,
L.
,
Zhao
,
J.
, and
Ye
,
X. R.
,
2012
, “
Primary Design and Dynamic Analysis of an Articulated Floating Offshore Wind Turbine
,”
Adv. Mater. Res.
,
347
, pp.
2191
2194
. Trans Tech Publications. 10.4028/www.scientific.net/AMR.512-515.2191
11.
Philip
,
V.
,
Joseph
,
A.
, and
Joy
,
C. M.
,
2015
, “
Three-Legged Articulated Support for 5 MW Offshore Wind Turbine
,”
Aquatic Proc.
,
4
, pp.
500
507
. 10.1016/j.aqpro.2015.02.065
12.
Joy
,
C. M.
,
Joseph
,
A.
, and
Mangal
,
L.
,
2016
, “
Experimental Investigation on the Dynamic Response of a Three-Legged Articulated Type Offshore Wind Tower
,”
ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering
,
Busan, South Korea
,
June
, p.
V001T01A009
.
13.
Navin
,
S. S.
, and
Philip
,
V.
,
2016
, “
Fatigue Analysis of Articulated Support for Offshore Wind Turbine
,”
Int. Res. J. Eng. Technol.
,
04
(
6
), pp.
2266
2271
.
14.
Spherical Bearing for Bridges
,
2009
,
(GB/T 17955) Standardization Law of the People’s Republic of China
,
Communications Press
,
Beijing, China
(in Chinese).
15.
Xie
,
W.
,
Tang
,
Y.
, and
Zhou
,
M.
,
2006
, “
Nonlinear Dynamic Characteristic Analysis of Articulated Tower Platform in the Deep Water
,”
Eng. Mech.
,
23
, pp.
36
41
(in Chinese).
16.
Tao
,
L. B.
,
2006
, “
Viscous Damping of TLP and Spar in Deep Water
,”
Shipbuild. China
,
47
(
2
), pp.
21
27
.
17.
Zhou
,
M. H.
,
2005
,
Analysis of Nonlinear Dynamics Response of an Articulated Tower Platform
,
M.S. Eng. dissertation
,
Tianjin University
(in Chinese).
18.
Moriarty
,
P. J.
, and
Hansen
,
A. C.
,
2005
,
AeroDyn Theory Manual (No. NREL/TP-500-36881)
,
National Renewable Energy Lab.
,
Golden, CO
.
19.
Li
,
Y.
,
Liu
,
L.
,
Zhu
,
Q.
,
Guo
,
Y.
,
Hu
,
Z.
, and
Tang
,
Y.
,
2018
, “
Influence of Vortex-Induced Loads on the Motion of SPAR-Type Wind Turbine: A Coupled Aero-Hydro-Vortex-Mooring Investigation
,”
ASME J. Offshore Mech. Arct. Eng.
,
140
(
5
), p.
051903
. 10.1115/1.4040048
20.
China Classification Society
,
2005
,
Offshore Mobile Platform Classification Guidelines
,
China Communications Press
,
Beijing
(in Chinese).
21.
Lopez-Pavon
,
C.
, and
Souto-Iglesias
,
A.
,
2015
, “
Hydrodynamic Coefficients and Pressure Loads on Heave Plates for Semi-Submersible Floating Offshore Wind Turbines: A Comparative Analysis Using Large Scale Models
,”
Renew. Energy
,
81
, pp.
864
881
. 10.1016/j.renene.2015.04.003
22.
Awtar
,
S.
,
Slocum
,
A. H.
, and
Sevincer
,
E.
,
2007
, “
Characteristics of Beam-Based Flexure Modules
,”
ASME J. Mech. Des.
,
129
(
6
), pp.
625
639
. 10.1115/1.2717231
You do not currently have access to this content.