This paper presents an analysis of stratification-dependent mean velocity profiles measured in a Norwegian coastal wind climate, and its comparison with models available in the literature. For this purpose, we use 3 years of observations from a 100 m meteorological mast located at the Frøya island (150 km west of Trondheim, Norway), equipped with a set of two-dimensional (2D) ultrasonic anemometers. The presented analysis is preceded by a general description of the site wind climate, the atmospheric stratification, the roughness length, and the surface layer height. Finally, the measured wind velocity profile is compared with selected models: the basic power and logarithmic law and the stability-corrected models: stability-corrected logarithmic wind profile, the Panofsky and Dutton model, the Peña boundary layer height corrected model, and the correlation-based Smedman-Högström model.

References

1.
Kettle
,
A. J.
,
2014
, “
Unexpected Vertical Wind Speed Profiles in the Boundary Layer Over the Southern North Sea
,”
J. Wind Eng. Ind. Aerodyn.
,
134
, pp.
149
162
.
2.
Gualtieri
,
G.
, and
Secci
,
S.
,
2011
, “
Comparing Methods to Calculate Atmospheric Stability-Dependent Wind Speed Profiles: A Case Study on Coastal Location
,”
Renewable Energy
,
36
(
8
), pp.
2189
2204
.
3.
Rodrigo
,
J. S.
,
Cantero
,
E.
,
García
,
B.
,
Borbón
,
F.
,
Irigoyen
,
U.
,
Lozano
,
S.
,
Fernande
,
P. M.
, and
Chávez
,
R. A.
,
2015
, “
Atmospheric Stability Assessment for the Characterization of Offshore Wind Conditions
,”
J. Phys. Conf. Ser.
,
625
(
1
), p.
012044
.
4.
Alblas
,
L.
,
Bierbooms
,
W.
, and
Veldkamp
,
D.
,
2014
, “
Power Output of Offshore Wind Farms in Relation to Atmospheric Stability
,”
J. Phys. Conf. Ser.
,
555
(
1
), p.
012004
.
5.
Andersen
,
O. J.
, and
Løvseth
,
J.
,
2006
, “
The Frøya Database and Maritime Boundary Layer Wind Description
,”
Mar. Struct.
,
19
(
2–3
), pp.
173
192
.
6.
Bierbooms
,
W.
, and
Cheng
,
P. W.
,
2002
, “
Stochastic Gust Model for Design Calculations of Wind Turbines
,”
J. Wind Eng. Ind. Aerodyn.
,
90
(
11
), pp.
1237
1251
.
7.
Kalvig
,
S.
,
Gudmestad
,
O. T.
, and
Winther
,
N.
,
2014
, “
Exploring the Gap Between ‘Best Knowledge’ and ‘Best Practice’ in Boundary Layer Meteorology for Offshore Wind Energy
,”
Wind Energy
,
17
(
1
), pp.
161
171
.
8.
Fisher
,
B. E. A.
,
Erbrink
,
H.
,
Finardi
,
S.
,
Jeannet
,
P.
,
Joffre
,
S.
,
Morselli
,
M. G.
,
Pechinger
,
U.
,
Seibert
,
P.
, and
Thomson
,
D.
,
1998
, “
COST Action 710: Final Report: Harmonization of the Pre-Processing of Meteorological Data for Atmospheric Dispersion Models
,” European Commission, Luxembourg, Report No.
EUR 18195 EN
.https://cordis.europa.eu/publication/rcn/199811141_en.html
9.
Det Norske Veritas
,
2010
, “
Environmental Conditions and Environmental Loads
,” International Standard, Det Norske Veritas AS, Høvik, Norway, Standard No.
DNV-RP-C205
.https://rules.dnvgl.com/docs/pdf/dnv/codes/docs/2010-10/rp-c205.pdf
10.
Peña
,
A.
,
Gryning
,
S. E.
, and
Hasager
,
C. B.
,
2008
, “
Measurements and Modelling of the Wind Speed Profile in the Marine Atmospheric Boundary Layer
,”
Boundary Layer Meteorol.
,
129
(
3
), pp.
479
495
.
11.
Panofsky
,
H. A.
, and
Dutton
,
J. A.
,
1984
,
Atmospheric Turbulence: Models and Methods for Engineering Applications
,
Wiley
,
New York
.
12.
Smedman-Högström
,
A. S.
, and
Högström
,
U.
,
1978
, “
A Practical Method for Determining Wind Frequency Distributions for the Lowest 200 m From Routine Meteorological Data
,”
J. Appl. Meteorol.
,
17
(
7
), pp.
942
954
.
13.
Arya
,
P. S.
,
2001
,
Introduction to Micrometeorology
,
Academic Press
, San Diego, CA, Chap. 11.2.
14.
Foken
,
T.
,
2008
,
Micrometeorology
,
Springer-Verlag Berlin
, Chap. 2.3.2.
15.
Irwin
,
J. S.
,
1979
, “
A Theoretical Variation of the Wind Profile Power-Law Exponent as a Function of Surface Roughness and Stability
,”
Atmos. Environ
,
13
(
1
), pp.
191
194
.
16.
Lange
,
B.
,
Larsen
,
S.
,
Højstrup
,
J.
, and
Barthelmie
,
R.
,
2004
, “
The Influence of Thermal Effects on the Wind Speed Profile of the Coastal Marine Boundary Layer
,”
Boundary Layer Meteorol.
,
112
(
3
), pp.
587
617
.
17.
ISO
,
1975
, “
Standard Atmosphere
,” International Organization for Standardization, Geneva, Switzerland, Standard No. ISO 2533.
18.
Andersen
,
O. J.
, and
Løvseth
,
J.
,
1995
, “
Gale Force Maritime Wind. The Frøya Data Base—Part 1: Sites and Instrumentation. Review of the Data Base
,”
J. Wind Eng. Ind. Aerodyn.
,
57
(
1
), pp.
97
109
.
19.
IHS ESDU
,
2001
, “
Characteristics of Atmospheric Turbulence Near the Ground—Part II: Single Point Data for Strong Winds (Neutral Atmosphere)
,” Engineering Sciences Data Unit, IHS Inc., London, UK, Report No. ESDU 85020.
20.
Det Norske Veritas
,
2013
, “
Design of Offshore Wind Turbine Structures
,” International Standard, Det Norske Veritas AS, Høvik, Norway, Standard No.
DNV-OS-J101
.https://rules.dnvgl.com/docs/pdf/DNV/codes/docs/2014-05/Os-J101.pdf
21.
IEC
,
2009
, “
Wind Turbines—Part 3: Design Requirements for Offshore Wind Turbines
,” International Electrotechnical Commission, Geneva, Switzerland, Standard No.
IEC61400-3
.https://collections.iec.ch/std/series/iec61400-3%7Bed1.0%7Den.nsf/doc.xsp?open&documentId=5A5C5AD96C9C1BD9C1257CCA0030D028
22.
Buck
,
A. L.
,
1981
, “
New Equations for Computing Vapor Pressure and Enhancement Factor
,”
J. Appl. Meteorol.
,
20
(
12
), pp.
1527
1532
.
23.
Barthelmie
,
R. J.
,
Churchfield
,
M. J.
,
Moriarty
,
P. J.
,
Lundquist
,
J. K.
,
Oxley
,
G. S.
,
Hahn
,
S.
, and
Pryor
,
S. C.
,
2015
, “
The Role of Atmospheric Stability/Turbulence on Wakes at the Egmond Aan Zee Offshore Wind Farm
,”
J. Phys. Conf. Ser.
,
625
(
1
), p.
012002
.
24.
Sathe
,
A.
,
Gryning
,
S. E.
, and
Peña
,
A.
,
2011
, “
Comparison of the Atmospheric Stability and Wind Profiles at Two Wind Farm Sites Over a Long Marine Fetch in the North Sea
,”
Wind Energy
,
14
(
6
), pp.
767
780
.
25.
Webb
,
E. K.
,
1970
, “
Profile Relationships: The Log‐Linear Range, and Extension to Strong Stability
,”
Q. J. R. Meteorol. Soc.
,
96
(
407
), pp.
67
90
.
You do not currently have access to this content.