In this paper, the ice load accumulated on a vertical plate of marine platforms during periodic spray icing in a cold room was investigated experimentally. The mass and thickness of ice formation on the plate along with several parameters such as relative humidity, the front and back surface temperatures of the vertical plate, initial temperature of water, and the spray mass flux impinging on the plate were measured and discussed. Analysis of variance (ANOVA), which is a statistical data analysis method, was utilized to interpret the contribution of the investigated parameters during the icing experiments, comparing the effect of each parameter and their interactions on the quantity of ice accumulated on the vertical plate. The primary analysis of the empirical results illustrates that the ambient temperature, airflow velocity, the distance between the fan and the plate, salinity and the timing of spray events have influences in the icing intensity and the amount of ice formation on the vertical plate. The errors between the average ice thicknesses obtained from two different experimental approaches were from 5 to 20%. For the saline ice formation, the temperature difference between the front and back of the vertical plate was greater than that of the pure ice formed during the spray icing event. The primary experimental results alongside the ANOVA analysis verified that airflow velocity is the most effective parameter, with a high level of interaction for time and temperature.

References

1.
Dehghani-Sanij
,
A. R.
,
Dehghani
,
S. R.
,
Naterer
,
G. F.
, and
Muzychka
,
Y. S.
,
2017
, “
Sea Spray Icing Phenomena on Marine Vessels and Offshore Structures: Review and Formulation
,”
Ocean Eng.
,
132
, pp.
25
39
.
2.
Dehghani-Sanij
,
A. R.
,
Dehghani
,
S. R.
,
Naterer
,
G. F.
, and
Muzychka
,
Y. S.
,
2017
, “
Marine Icing Phenomena on Vessels and Offshore Structures: Prediction and Analysis
,”
Ocean Eng.
,
143
, pp.
1
23
.
3.
Dehghani-Sanij
,
A. R.
,
2017
, “
Theoretical and Experimental Study of Heat Loss and Ice Accretion From Large Structures on the Marine Vessels and Offshore Structures
,” Ph.D. thesis, Memorial University of Newfoundland (MUN), St John's, NL, Canada.
4.
Rashid
,
T.
,
Khawaja
,
H. A.
, and
Edvardsen
,
K.
,
2016
, “
Review of Marine Icing and Anti-/de-Icing Systems
,”
J. Mar. Eng. Technol.
,
15
(
2
), pp.
79
87
.
5.
Cammaert, G., 2013, “
Impact of Marine Icing on Arctic Offshore Operations
,” Pilot Project, Vol. 5 of Arctic Marine Operations Challenges & Recommendations, Kinderdijk, The Netherlands, Report, IHC-OTI/ 38028.
6.
Dehghani-Sanij
,
A. R.
,
Muzychka
,
Y. S.
, and
Naterer
,
G. F.
,
2015
, “
Analysis of Ice Accretion on Vertical Surfaces of Marine Vessels and Structures in Arctic Conditions
,”
ASME
Paper No.
OMAE2015-41306.
7.
Dehghani-Sanij
,
A. R.
,
Muzychka
,
Y. S.
, and
Naterer
,
G. F.
,
2016
, “
Predicted Ice Accretion on Horizontal Surfaces of Marine Vessels and Offshore Structures in Arctic Regions
,”
ASME
Paper No.
OMAE2016-54054.
8.
Feit
,
D. M.
,
1987
, “
Forecasting of Superstructure Icing for Alaskan Waters
,”
Natl. Weather Dig.
,
12
(
2
), pp.
5
10
.http://polar.ncep.noaa.gov/mmab/papers/tn12/OPC12.pdf
9.
Fukusako
,
S.
,
Horibe
,
A.
, and
Tago
,
M.
,
1989
, “
Ice Accretion Characteristics along a Circular Cylinder Immersed in a Cold Air Stream With Seawater Spray
,”
Exp. Therm. Fluid Sci.
,
2
(
1
), pp.
81
90
.
10.
Jessup
,
R. G.
,
1985
, “
Forecast Techniques for Ice Accretion on Different Types of Marine Structures, Including Ships, Platforms and Coastal Facilities, Marine Meteorological and Related Oceanographic Activities
,” WMO Secretariat, Geneva, Switzerland, Report No. WMO/TD-No. 70.
11.
Jørgensen
,
T. S.
,
1982
, “
Influence of Ice Accretion on Activity in the Northern Part of the Norwegian Continental Shelf
,” Continental Shelf Institute, Norwegian Hydrodynamic Laboratories, Trondheim, Norway, Report No. F82016.
12.
Lock
,
G. S. H.
,
1972
, “
Some Aspects of Ice Formation With Special Reference to the Marine Environment
,”
North East Coast Inst. Eng. Shipbuilders
,
88
(
6
), pp.
175
184
.https://archive.org/details/transactionsnor00upogoog
13.
Lundqvist
,
J. E.
, and
Udin
,
I.
,
1977
, “
Ice Accretion on Ships With Special Emphasis on Baltic Conditions
,” Winter Navigation Research Board, Swedish Administration of Shipping and Navigation, Finnish Board of Navigation, Norrköping, Sweden, Research Report, No. 23.
14.
Ryerson
,
C. C.
,
2008
, “
Assessment of Superstructure Ice Protection as Applied to Offshore Oil Operations Safety: Problems, Hazards, Needs, and Potential Transfer Technologies
,” U.S. Army Cold Regions Research and Engineering Laboratory, Hanover, NH, Report No. ERDC/CRREL TR-08-14.
15.
Ryerson
,
C. C.
,
2009
, “
Assessment of Superstructure Ice Protection as Applied to Offshore Oil Operations Safety: Ice Protection Technologies, Safety Enhancements, and Development Needs
,” U.S. Army Cold Regions Research and Engineering Laboratory Hanover, NH, Report No. ERDC/CRREL TR-09-4.
16.
Ryerson
,
C. C.
,
2011
, “
Ice Protection of Offshore Platforms
,”
Cold Regi. Sci. Tech.
,
65
(
1
), pp.
97
110
.
17.
Wiersema
,
E.
,
Lange
,
F.
,
Cammaert
,
G.
,
Sliggers
,
F.
,
Jolles
,
W.
, and
Van Der Nat
,
C.
,
2014
, “
Arctic Operations Handbook JIP
,”
OTC Arctic Technology Conference, Offshore Technology Conference
, Houston, TX, Feb. 10–12, Paper No.
OTC-24545-MS
.
18.
Aksyutin
,
L. R.
,
1979
,
Icing of Ships
,
Sudostroeyne Publishing House
,
Leningrad
, (in Russian) p.
126
.
19.
Brown
,
R. D.
, and
Roebber
,
P.
,
1985
, “
The Scope of the Ice Accretion Problem in Canadian Waters Related to Offshore Energy and Transportation
,” Canadian Climate Centre, AES, Downsview, Toronto, ON, Canada, Report No. 85.13.
20.
Bodaghkhani
,
A.
,
Dehghani
,
S. R.
,
Muzychka
,
Y. S.
, and
Colbourne
,
B.
,
2016
, “
Understanding Spray Cloud Formation by Wave Impact on Marine Objects
,”
Cold Reg. Sci. Tech.
,
129
, pp.
114
136
.
21.
Dehghani-Sanij
,
A. R.
,
Naterer
,
G. F.
, and
Muzychka
,
Y. S.
,
2017
, “
Heat Transfer of Impinging Seawater Spray and Ice Accumulation on Marine Vessel Surfaces
,”
Heat Transfer Res.
,
48
(
17
), pp.
1599
1624
.
22.
Dehghani-Sanij
,
A. R.
,
Muzychka
,
Y. S.
, and
Naterer
,
G. F.
,
2018
, “
Droplet Trajectory and Thermal Analysis of Impinging Saline Spray Flow on Marine Platforms in Cold Seas and Ocean Regions
,”
Ocean Eng.
,
148
, pp.
538
547
.
23.
Shekhtman
,
A. N.
,
1968
, “
The Probability and Intensity of the Icing Up of Ocean Going Vessels
,” Moskow Nauk-Issled Institute, Aeroklim, Moscow, Russia, pp. 55–65.
24.
Shellard
,
H. C.
,
1974
, “
The Meteorological Aspects of Ice Accretion on Ships
,” World Meteorological Organization, Marine Science Affairs, Geneva, Switzerland, Report No. 10 (WMO-No. 397).
25.
Tabata
,
T.
,
Iwata
,
S.
, and
Ono
,
N.
,
1963
, “
Studies on the Ice Accumulation on Ships I
,”
Low Temp. Sci., Ser. A, Phys. Sci.
,
21
, pp.
173
221
.
26.
Zakrzewski
,
W. P.
,
1986
, “
Icing of Fishing Vessels, Part I: Splashing a Ship With Spray
,”
Eighth IAHR Symposium on Ice
, Iowa City, IA.
27.
Zakrzewski
,
W. P.
,
1987
, “
Splashing a Ship With Collision-Generated Spray
,”
Cold Reg. Sci. Tech.
,
14
(
1
), pp.
65
83
.
28.
Blackmore
,
R. Z.
, and
Lozowski
,
E. P.
,
1994
, “
An Heuristic Freezing Spray Model of Vessel Icing
,”
Int. J. Offshore Polar Eng.
,
4
(
2
), pp.
119
126
.https://www.onepetro.org/journal-paper/ISOPE-94-04-2-119
29.
Guest
,
P.
,
2005
, “
Vessel Icing
,”
Mariners Weather Log
,
49
(
3
), pp. 1–8.
30.
Zakrzewski
,
W. P.
, and
Lozowski
,
E. P.
,
1989
, “
Modelling and Forecasting Vessel Icing
,”
Freezing and Melting Heat Transfer in Engineering
,
K. C.
Cheng
, and
N.
Seki
, eds.,
Hemisphere
,
New York
, pp.
661
706
.
31.
Brown
,
R. D.
, and
Mitten
,
P.
,
1988
, “
Ice Accretion on Drilling Platforms Off the East Coast of Canada
,”
International Conference on Technology for Polar Areas
,
A.
Hansen
, and
J. F.
Storm
, eds., pp.
409
421
.
32.
Makkonen
,
L.
,
1989
, “
Formation of Spray Ice on Offshore Structures
,” U.S. Army Cold Regions Research & Engineering Laboratory, IAHR State-of-the-Art Report on Ice Forces, CRREL Special, Hanover, NH, Report No. 89-5 277-309.
33.
Nauman
,
J. W.
, and
Tyagi
,
R.
,
1985
, “
Sea Spray Icing and Freezing Conditions on Offshore Oil rigs-Alaska Experience and Regulatory Implications
,”
International Workshop on Offshore Winds and Icing, Halifax
, Nova Scotia, Canada, pp.
313
328
.
34.
Dehghani
,
S. R.
,
Muzychka
,
Y. S.
, and
Naterer
,
G. F.
,
2016
, “
Droplet Trajectories of Wave-Impact Sea Spray on a Marine Vessel
,”
Cold Reg. Sci. Technol.
,
127
, pp.
1
9
.
35.
Dehghani
,
S. R.
,
Naterer
,
G. F.
, and
Muzychka
,
Y. S.
,
2016
, “
Droplet Size and Velocity Distributions of Wave-Impact Sea Spray Over a Marine Vessel
,”
Cold Reg. Sci. Technol.
,
132
, pp.
60
67
.
36.
Dehghani
,
S. R.
,
Muzychka
,
Y. S.
, and
Naterer
,
G. F.
,
2017
, “
Water Breakup Phenomena in Wave-Impact Sea Spray on a Vessel
,”
Ocean Eng.
,
134
, pp.
50
61
.
37.
Dehghani
,
S. R.
,
Naterer
,
G. F.
, and
Muzychka
,
Y. S.
,
2018
, “
3-D Trajectory Analysis of Wave-Impact Sea Spray Over a Marine Vessel
,”
Cold Reg. Sci. Technol.
,
146
, pp.
72
80
.
38.
Kulyakhtin
,
A.
, and
Tsarau
,
A.
,
2014
, “
A Time-Dependent Model of Marine Icing With Application of Computational Fluid Dynamics
,”
Cold Reg. Sci. Tech.
,
104–105
, pp.
33
44
.
39.
Lozowski
,
E. P.
,
Szilder
,
K.
, and
Makkonen
,
L.
,
2000
, “
Computer Simulation of Marine Ice Accretion
,”
R. Soc. London Philos. Trans. Ser. A
,
358
(
1776
), pp.
2811
2845
.
40.
Horjen
,
I.
, and
Vefsnmo
,
S.
,
1985
, “
A Kinematic and Thermodynamic Analysis of Sea Spray, Offshore Icing-Phase II
,” Norwegian Hydrodynamic Laboratory (NHL), Norwegian, Norway, Report No. STF60 F85014.
41.
Jones
,
K. F.
, and
Andreas
,
E. L.
,
2012
, “
Sea Spray Concentrations and the Icing of Fixed Offshore Structures
,”
Q. J. R. Meteorol. Soc.
,
138
(
662
), pp.
131
144
.
42.
Dehghani
,
S. R.
,
Naterer
,
G. F.
, and
Muzychka
,
Y. S.
,
2017
, “
Transient Heat Conduction Through a Substrate of Brine Spongy Ice
,”
Heat Mass Transfer
,
53
(
8
), pp.
2719
2729
.
43.
Fazelpour
,
A.
,
Dehghani
,
S. R.
,
Masek
,
V.
, and
Muzychka
,
Y. S.
,
2017
, “
Ice Load Measurements on Known Structures Using Image Processing Methods
,”
World Acad. Sci. Eng. Technol. Int. J. Electr. Comput. Energy Electron. Commun. Eng.
,
11
, pp.
829
832
.
44.
Lozowski
,
E. P.
,
Stallabrass
,
J. R.
, and
Hearty
,
P. F.
,
1983
, “
The Icing of an Unheated, Non-Rotating Cylinder, Part I: A Simulation Model
,”
J. Clim. Appl. Meteorol.
,
22
(
12
), pp.
2053
2062
.
45.
Szilder
,
K.
,
Forest
,
T. W.
, and
Lozowski
,
E. P.
,
1995
, “
Experimental Verification of a Pendant Ice Formation Model
,”
Fifth International Offshore and Polar Engineering Conference II
, The Hague, The Netherlands, pp.
469
475
.
46.
Horjen
,
I.
,
2013
, “
Numerical Modeling of Two-Dimensional Sea Spray Icing on Vessel-Mounted Cylinders
,”
Cold Reg. Sci. Tech.
,
93
, pp.
20
35
.
47.
Horjen
,
I.
,
2015
, “
Offshore Drilling Rig Ice Accretion Modeling Including a Surficial Brine Film
,”
Cold Reg. Sci. Tech.
,
119
, pp.
84
110
.
48.
Soares
,
C. G.
, and
Garbatov
,
Y.
eds.,
2015
, “
Ships and Offshore Structures XIX
,”
CRC Press
, Boca Raton, FL.
49.
Pringle
,
D. J.
,
Eicken
,
H.
,
Trodahl
,
H. J.
, and
Backstrom
,
L. G. E.
,
2007
, “
Thermal Conductivity of Landfast Antarctic and Arctic Sea Ice
,”
J. Geoph. Res.
,
112
(
C4
), pp.
1
13
.
50.
Brakel
,
T. W.
,
Charpin
,
J. P. F.
, and
Myers
,
T. G.
,
2007
, “
One-Dimensional Ice Growth Due to Incoming Supercooled Droplets Impacting on a Thin Conducting Substrate
,”
Int. J. Heat Mass Transfer
,
50
(
9–10
), pp.
1694
1705
.
51.
Cox
,
G. F. N.
, and
Weeks
,
W. F.
,
1983
, “
Equations for Determining the Gas and Brine Volumes of Sea-Ice Samples
,”
J. Glaciol.
,
29
(
102
), pp.
306
316
.
52.
Kulyakhtin
,
A.
,
Kulyakhtin
,
S.
, and
Løset
,
S.
,
2013
, “
Measurements of Thermodynamic Properties of Ice Created by Frozen Spray
,”
23 International Offshore and Polar Engineering
, Anchorage, AK, pp.
1104
1111
.
53.
Anderson
,
M. J.
, and
Whitcomb
,
P. J.
,
2016
,
DOE Simplified: Practical Tools for Effective Experimentation
,
CRC Press
, Boca Raton, FL.
54.
Vaughn
,
N. A.
, and
Polnaszek
,
C.
,
2007
,
Design-Expert® Software
,
Stat-Ease
,
Minneapolis, MN
.
55.
Daniel
,
C.
,
1959
, “
Use of Half-Normal Plots in Interpreting Factorial Two-Level Experiments
,”
Technometrics
,
1
(
4
), pp.
311
341
.
You do not currently have access to this content.