Shipping in ice-covered regions has gained high attention within recent years. Analogous to weather routing, the occurrence of ice in a seaway affects the selection of the optimal route with respect to the travel time or fuel consumption. The shorter, direct path between two points—which may lead through an ice-covered area—may require a reduction of speed and an increase in fuel consumption. A longer, indirect route, could be more efficient by avoiding the ice-covered region. Certain regions may have to be avoided completely, if the ice thickness exceeds the ice-capability of the ship. The objective of this study is to develop a computational method that combines coastline maps, route cost information (e.g., ice thickness), transport task, and ship properties to find the optimal route between port of departure, A, and port of destination, B. The development approach for this tool is to formulate the transport task in the form of a potential problem, solve this equation with a finite element method (FEM), and apply line integration and optimization to determine the best route. The functionality of the method is first evaluated with simple test problems and then applied to realistic transport scenarios.

References

1.
Piehl
,
H.
,
von Bock und Polach
,
R. U. F.
,
Erceg
,
S.
,
Polic
,
D.
,
Bambulyak
,
A.
,
Das
,
J.
,
Erceg
,
B.
,
Tõns
,
T.
,
Bergström
,
M. V.
,
Myland
,
D.
,
Milakovic
,
A.-S.
, and
Ehlers
,
S.
,
2015
, “
A Framework for a Design and Optimization Platform for Ships in Arctic Conditions
,”
International Conference on Port and Ocean Engineering Under Arctic Conditions
(POAC), Trondheim, Norway, June 14–18, Paper No.
198
.https://www.researchgate.net/publication/283106632_A_framework_for_a_design_and_optimization_platform_for_ships_in_arctic_conditions
2.
Bertoia
,
C.
,
Manore
,
M.
,
Steen Andersen
,
H.
,
OConnors
,
C.
,
Hansen
,
K.
, and
Evanego
,
C.
,
2004
, “
Synthetic Aperture Radar for Operational Ice Observation and Analysis
,”
Synthetic Aperture Radar Marine User's Manual
,
C. R.
Jackson
and
J. R.
Apel
, eds.,
National Oceanic and Atmospheric Administration
,
Washington, DC
, pp.
417
442
.
3.
Khvorostovsky
,
K.
, and
Rampal
,
P.
,
2016
, “
On Retrieving Sea Ice Freeboard From Icesat Laser Altimeter
,”
Cryosphere
,
10
(
5
), pp.
2329
2346
.
4.
Kovacs
,
A.
,
Valleau
,
N. C.
, and
Holladay
,
J. S.
,
1987
, “
Airborne Electromagnetic Sounding of Sea-Ice Thickness and Subice Bathymetry
,”
Cold Reg. Sci. Technol.
,
14
(
3
), pp.
289
311
.
5.
Suominen
,
M.
,
Kulovesi
,
J.
,
Lensu
,
M.
,
Lehtiranta
,
J.
, and
Kujala
,
P.
,
2014
, “
A Comparison of Shipborne Methods for Ice Thickness Determination
,”
22nd IAHR International Symposium on Ice
, Singapore, Aug. 11–15.
6.
Williams
,
E.
,
Swithinbank
,
C.
, and
Robin
,
G.
,
1975
, “
A Submarine Sonar Study of Arctic Pack Ice
,”
J. Glaciol.
,
15
(
73
), pp.
349
362
.
7.
Melling
,
H.
,
Johnston
,
P. H.
, and
Riedel
,
D. A.
,
1995
, “
Measurements of the Underside Topography of Sea Ice by Moored Subsea Sonar
,”
J. Atmos. Oceanic Technol.
,
12
(
3
), pp.
589
602
.
8.
WMO
,
1968
, “
WMO Sea Ice Nomenclature, Terminology and Codes
,” World Meteorological Organization, Geneva, Switzerland, Vol. 1, Report No. 259.
9.
Choi
,
M.
,
Chung
,
H.
,
Yamaguchi
,
H.
, and
Nagakawa
,
K.
,
2015
, “
Arctic Sea Route Path Planning Based on an Uncertain Ice Prediction Model
,”
Cold Reg. Sci. Technol.
,
109
, pp.
61
69
.
10.
Dijkstra
,
E. W.
,
1959
, “
A Note on Two Problems in Connexion With Graphs
,”
Numer. Math.
,
1
(
1
), pp.
269
271
.
11.
Hart
,
P. E.
,
Nilsson
,
N. J.
, and
Raphael
,
B.
,
1968
, “
A Formal Basis for the Heuristic Determination of Minimum Cost Paths
,”
IEEE Trans. Syst. Sci. Cybern. SSC4
,
4
(
2
), pp.
100
107
.
12.
Björnsson
,
Y.
, and
Halldorsson
,
K.
,
2006
, “
Improved Heuristics for Optimal Path-Finding on Game Maps
,”
Second AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment
(AIIDE), Marina del Rey, CA, June 20–23, Paper No.
6
.http://www.aaai.org/Papers/AIIDE/2006/AIIDE06-006.pdf
13.
Young
,
T.
,
2001
, “
Optimizing Points-of-Visibility Pathfinding
,”
Game Programming Gems 2
,
M.
DeLoura
, ed., Vol.
2
.,
Charles River Media
,
Hingham, MA
, pp.
324
329
.
14.
Open Source
, 2017, “
Python Programming Language
,” Python Software Foundation, Wilmington, DE, accessed July 1, 2017, http://www.python.org/
15.
Topf
,
J.
, and
Hormann
,
C.
,
2016
, “
OpenStreetMapData
,” Jochen Topf, Dresden, Germany, accessed July 1, 2017, http://openstreetmapdata.com/data/coastlines
17.
Andreas Kloeckner
,
2008
, “
MeshPy
,” Andreas Klöckner, accessed July 1, 2017, https://mathema.tician.de/software/meshpy/
18.
Shewchuk
,
J. R.
,
1996
, “
Triangle: Engineering a 2d Quality Mesh Generator and Delaunay Triangulator
,”
Applied Computational Geometry: Towards Geometric Engineering
(Lecture Notes in Computer Science), Vol.
1148
,
Springer-Verlag
,
Berlin
, pp.
203
222
.
19.
Bathe
,
K.-J.
,
1996
,
Finite Element Procedures
,
Prentice Hall
,
Englewood Cliffs, NJ
.
20.
SciPy.org
,
2014
, “
Spsolve
,” The Scipy Community, accessed July 1, 2017, http://docs.scipy.org/doc/scipy/reference/sparse.linalg.html
21.
SciPy.org
,
2016
, “
Fmin
,” The Scipy Community, accessed July 1, 2017, http://docs.scipy.org/doc/scipy-0.16.1/reference/generated/scipy.optimize.fmin.html
You do not currently have access to this content.