This paper presents a layout optimization methodology for the topside deck of a floating liquefied natural gas facility (FLNG) using inherent safety principles. Natural gas is emerging as a clean energy, and a large amount of natural gas exists in the proven offshore area, thus making it an energy source with huge potential in today's and the future market. FLNG facilities tap natural gas from an offshore well by floating, compressing it into liquefied natural gas (LNG), and offloading it to LNG carriers after temporary storage. In addition, FLNG facilities enable long-distance as well as multilocation transportation. The FLNG facility requires compact design due to limited space and high construction costs and thus faces a more challenging situation where the design has to concurrently guarantee economic profits and a safe operational environment. Therefore, the layout of the topside deck, which includes production, storage, and other functions, plays a paramount role in designing an FLNG facility. This paper optimizes the layout of an FLNG topside deck by implementing inherent safety principles. The objective is to design a topside deck layout which achieves the largest extent of inherent safety with optimal costs. The details of the principles and their application for layout optimization are also provided.

References

1.
Won
,
W.
,
Lee
,
S. K.
,
Choi
,
K.
, and
Kwon
,
Y.
,
2014
, “
Current Trends for the Floating Liquefied Natural Gas (FLNG) Technologies
,”
Korean J. Chem. Eng.
,
31
(
5
), pp.
732
743
.
2.
Gowid
,
S.
,
Dixon
,
R.
, and
Ghani
,
S.
,
2014
, “
Optimization of Reliability and Maintenance of Liquefaction System on FLNG Terminals Using Markov Modeling
,”
Int. J. Qual. Reliab. Manage.
,
31
(
3
), pp.
293
310
.
3.
Zhao
,
W.
,
Yang
,
J.
, and
Hu
,
Z.
,
2013
, “
Effects of Sloshing on the Global Motion Responses of FLNG
,”
Ships Offshore Struct.
,
8
(
2
), pp.
111
122
.
4.
Chakrabarti
,
S.
,
2005
,
Handbook of Offshore Engineering
,
Elsevier
,
Oxford, UK
, Chap. 7.
5.
Ronalds
,
B. F.
, and
Lim
,
E. F. H.
,
1999
, “
FPSO Trends
,”
SPE Annual Technical Conference
,
SPE, Houston, TX
, SPE Paper No. 56708.
6.
Paradowski
,
H.
, and
Hagyard
,
P.
,
2003
, “
Comparing Five LNG Process
,”
Hydrocarbon Eng.
,
8
(10), pp.
32
37
.
7.
Ku
,
N. K.
,
Hwang
,
J. H.
,
Lee
,
J. C.
,
Roh
,
M. I.
, and
Lee
,
K. Y.
,
2014
, “
Optimal Module Layout for a Generic Offshore LNG Liquefaction Process of LNG-FPSO
,”
Ships Offshore Struct.
,
9
(
3
), pp.
311
332
.
8.
Paltrinieri
,
N.
,
Tugnoli
,
A.
, and
Cozzani
,
V.
,
2015
, “
Hazard Identification for Innovative LNG Regasification Technologies
,”
Reliab. Eng. Syst. Saf.
,
137
, pp.
18
28
.
9.
Pitblado
,
R. M.
, and
Woodward
,
J. L.
,
2011
, “
Highlights of LNG Risk Technology
,”
J. Loss Prev. Process Ind.
,
24
(
6
), pp.
827
836
.
10.
Otsubo
,
K.
,
Sotaro
,
M.
,
Yaguchi
,
Y.
,
Asanuma
,
T.
, and
Maeda
,
K.
,
2014
, “
Gas Explosion Analysis for FLNG Plant Layout Design
,”
J. of the Japan Society of Naval Architects and Ocean Engineers
,
19
, pp.
255
263
.
11.
Dan
,
S.
,
Lee
,
C. J.
,
Park
,
J.
,
Shin
,
D.
, and
Yoon
,
E. S.
,
2014
, “
Quantitative Risk Analysis of Fire and Explosion on the Top-Side LNG-Liquefaction Process of LNG-FPSO
,”
Process Saf. Environ. Prot.
,
92
(
5
), pp.
430
441
.
12.
Vanem
,
E.
,
Antão
,
P.
,
Østvik
,
I.
, and
de Comas
,
F. D. C.
,
2008
, “
Analysing the Risk of LNG Carrier Operations
,”
Reliab. Eng. Syst. Saf.
,
93
(
9
), pp.
1328
1344
.
13.
Tugnoli
,
A.
,
Khan
,
F.
,
Amyotte
,
P.
, and
Cozzani
,
V.
,
2008
, “
Safety Assessment in Plant Layout Design Using Indexing Approach: Implementing Inherent Safety Perspective—Part 1: Guideword Applicability and Method Description
,”
J. Hazard. Mater.
,
160
(
1
), pp.
100
109
.
14.
Ebrahimi
,
F.
,
Virkki-Hatakka
,
T.
, and
Turunen
,
I.
,
2012
, “
Safety Analysis of Intensified Processes
,”
Chem. Eng. Process.: Process Intensif.
,
52
, pp.
28
33
.
15.
Rahman
,
M.
,
Heikkilä
,
A. M.
, and
Hurme
,
M.
,
2005
, “
Comparison of Inherent Safety Indices in Process Concept Evaluation
,”
J. Loss Prev. Process Ind.
,
18
(
4
), pp.
327
334
.
16.
Gangadharan
,
P.
,
Singh
,
R.
,
Cheng
,
F.
, and
Lou
,
H. H.
,
2013
, “
Novel Methodology for Inherent Safety Assessment in the Process Design Stage
,”
Ind. Eng. Chem. Res.
,
52
(
17
), pp.
5921
5933
.
17.
Khan
,
F. I.
, and
Abbasi
,
S. A.
,
1997
, “
Accident Hazard Index: A Multi-Attribute Method for Process Industry Hazard Rating
,”
Process Saf. Environ. Prot.
,
75
(
4
), pp.
217
224
.
18.
Khan
,
F. I.
,
Husain
,
T.
, and
Abbasi
,
S. A.
,
2001
, “
Safety Weighted Hazard Index (SWeHI): A New, User-Friendly Tool for Swift Yet Comprehensive Hazard Identification and Safety Evaluation in Chemical Process Industries
,”
Process Saf. Environ. Prot.
,
79
(
2
), pp.
65
80
.
19.
Khan
,
F. I.
,
Sadiq
,
R.
, and
Amyotte
,
P. R.
,
2003
, “
Evaluation of Available Indices for Inherently Safer Design Options
,”
Process Saf. Prog.
,
22
(
2
), pp.
83
97
.
20.
Xin
,
P.
,
Ahmed
,
S.
, and
Khan
,
F.
,
2015
, “
Inherent Safety Aspects for Layout Design of a Floating LNG Facility
,”
ASME
Paper No. OMAE2015-41669.
21.
American Institute of Chemical Engineers
, Center for Chemical Process Safety,
1995
,
Guidelines for Safety Process Operations and Maintenance
,
Center for Chemical Process Safety/AIChE
,
New York
, Chap. 3.
22.
Wood
,
D.
,
Mokhatab
,
S.
, and
Economides
,
M. J.
,
2007
, “
Offshore Natural Gas Liquefaction Process and Development Issues
,”
SPE Proj. Facil. Constr.
,
2
(
4
), pp.
1
7
.
23.
Wang
,
X.
, and
Economides
,
M.
,
2013
,
Advanced Natural Gas Engineering
,
Gulf Publishing Company
,
Houston, TX
, Chap. 6.
24.
Nibbelke
,
R.
,
Kauffman
,
S.
, and
Pek
,
B.
,
2002
, “
Double Mixed Refrigerant LNG Process Provides Viable Alternative for Tropical Conditions
,”
Oil Gas J.
,
100
(
27
), pp.
64
66
.
25.
Hwang
,
J. H.
,
Roh
,
M. I.
, and
Lee
,
K. Y.
,
2013
, “
Determination of the Optimal Operating Conditions of the Dual Mixed Refrigerant Cycle for the LNG FPSO Topside Liquefaction Process
,”
Comput. Chem. Eng.
,
49
, pp.
25
36
.
26.
Hwang
,
J.
,
Lee
,
J. C.
,
Lee
,
K. Y.
, and
Roh
,
M. I.
,
2012
, “
Optimal Synthesis of LNG FPSO Liquefaction Cycles
,”
22nd International Offshore and Polar Engineering Conference, International Society of Offshore and Polar Engineers
,
Rhodes, Greece
, pp.
17
22
.
27.
Hwang
,
J.
, and
Lee
,
K. Y.
,
2014
, “
Optimal Liquefaction Process Cycle Considering Simplicity and Efficiency for LNG FPSO at FEED Stage
,”
Comput. Chem. Eng.
,
63
, pp.
1
33
.
28.
Mecklenburgh
,
J. C.
,
1973
,
Plant Layout: A Guide to the Layout of Process Plant and Sites
,
Wiley
,
New York
.
29.
Center for Chemical Process Safety
,
2003
,
Guidelines for Facility Siting and Layout
,
Center for Chemical Process Safety/AIChE
,
New York
, Appendix A.
30.
American Petroleum Institute
,
2013
,
Recommended Practice for Design and Hazard Analysis for Offshore Production Facilities Recommended Practice API-l4J
, 2nd ed.,
American Petroleum Institute
,
Washington, DC
.
31.
Terdre
,
N.
,
2011
, “
Safety, Offloading Issues Impact FLNG Vessel Size and Layout
,”
Offshore
,
71
(
11
), pp. 66.
32.
Chakrabarti
,
S.
,
2005
,
Handbook of Offshore Engineering
,
Elsevier
,
Oxford, UK
, Chap. 10.
33.
Center for Chemical Process Safety
,
2003
,
Guidelines for Facility Siting and Layout
,
Center for Chemical Process Safety/AIChE
,
New York
, Chap. 5.
34.
Khan
,
F. I.
, and
Amyotte
,
P. R.
,
2002
, “
Inherent Safety in Offshore Oil and Gas Activities: A Review of the Present Status and Future Directions
,”
J. Loss Prev. Process Ind.
,
15
(
4
), pp.
279
289
.
35.
Francis
,
R. L.
, and
White
,
J. A.
,
1974
,
Facility Layout and Location: An Analytical Approach
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
36.
Barbosa-Povoa
,
A. P.
,
Mateus
,
R.
, and
Novais
,
A. Q.
,
2001
, “
Optimal Two-Dimensional Layout of Industrial Facilities
,”
Int. J. Prod. Res.
,
39
(
12
), pp.
2567
2593
.
37.
Patsiatzis
,
D. I.
, and
Papageorgiou
,
L. G.
,
2002
, “
Optimal Multi-Floor Process Plant Layout
,”
Comput. Chem. Eng.
,
26
(
4
), pp.
575
583
.
38.
Sherali
,
H. D.
,
Fraticelli
,
B. M.
, and
Meller
,
R. D.
,
2003
, “
Enhanced Model Formulations for Optimal Facility Layout
,”
Oper. Res.
,
51
(
4
), pp.
629
644
.
39.
Kletz
,
T.
,
2009
,
What Went Wrong? Case Histories of Process Plant Disasters and How They Could Have Been Avoided
, 5th ed.,
Elsevier
,
Burlington, VT
.
40.
Khan
,
F. I.
, and
Amyotte
,
P. R.
,
2005
, “
I2SI: A Comprehensive Quantitative Tool for Inherent Safety and Cost Evaluation
,”
J. Loss Prev. Process Ind.
,
18
(
4
), pp.
310
326
.
41.
Khan
,
F. I.
, and
Amyotte
,
P. R.
,
2004
, “
Integrated Inherent Safety Index (I2SI): A Tool for Inherent Safety Evaluation
,”
Process Saf. Prog.
,
23
(
2
), pp.
136
148
.
42.
Tugnoli
,
A.
,
Khan
,
F.
,
Amyotte
,
P.
, and
Cozzani
,
V.
,
2008
, “
Safety Assessment in Plant Layout Design Using Indexing Approach: Implementing Inherent Safety Perspective—Part 2: Domino Hazard Index and Case Study
,”
J. of Hazardous Materials
,
160
(
1
), pp.
110
121
.
43.
López-Molina
,
A.
,
Vázquez-Román
,
R.
,
Mannan
,
M. S.
, and
Félix-Flores
,
M. G.
,
2013
, “
An Approach for Domino Effect Reduction Based on Optimal Layouts
,”
J. Loss Prev. Process Ind.
,
26
(
5
), pp.
887
894
.
You do not currently have access to this content.