This paper investigates the interaction of solitary waves (representative of tsunamis) with idealized flat-topped conical islands. The investigation is based on simulations produced by a numerical model that solves the two-dimensional Boussinesq-type equations of Madsen and Sørensen using a total variation diminishing Lax–Wendroff scheme. After verification against published laboratory data on solitary wave run-up at a single island, the numerical model is applied to study the maximum run-up at a pair of identical conical islands located at different spacings apart for various angles of wave attack. The predicted results indicate that the maximum run-up can be attenuated or enhanced according to the position of the second island because of wave refraction, diffraction, and reflection. It is also observed that the local wave height and hence run-up can be amplified at certain gap spacing between the islands, owing to the interference between the incident waves and the reflected waves between islands.

1.
Tsuji
,
Y.
,
Matsutomi
,
H.
,
Imamura
,
F.
,
Takeo
,
M.
,
Kawata
,
Y.
,
Matsuyama
,
M.
,
Takahashi
,
T.
,
Sunarjo
, and
Harjadi
,
P.
, 1995, “
Damage to Coastal Villages Due To the 1992 Flores Island Earthquake Tsunami
,”
Pure Appl. Geophys.
0033-4553,
144
(
3–4
), pp.
481
524
.
2.
Briggs
,
M. J.
,
Borrero
,
J. C.
, and
Synolakis
,
C. E.
, 2005, “
Tsunami Disaster Mitigation Research in the United States
,”
International Symposium on Tsunami Mitigation in Future
, Kobe, Japan, pp.
1
14
.
3.
Liu
,
P. L.-F.
,
Cho
,
Y.
,
Briggs
,
M. J.
,
Kanoglu
,
U.
, and
Synolakis
,
C. E.
, 1995, “
Runup of Solitary Waves on a Circular Island
,”
J. Fluid Mech.
0022-1120,
302
, pp.
259
285
.
4.
Briggs
,
M. J.
,
Synolakis
,
C. E.
,
Harkins
,
G. S.
, and
Green
,
D. R.
, 1995, “
Laboratory Experiments of Tsunami Runup on a Circular Island
,”
Pure Appl. Geophys.
0033-4553,
144
(
3–4
), pp.
569
593
.
5.
Lavigne
,
F.
,
Paris
,
R.
,
Grancher
,
D.
,
Wassmer
,
P.
,
Brunstein
,
D.
,
Vautier
,
F.
,
Leone
,
F.
,
Flohic
,
F.
,
De Coster
,
B.
,
Gunawan
,
T.
,
Gomez
,
C.
,
Setiawan
,
A.
,
Cahyadi
,
R.
, and
Fachrizal
, 2009, “
Reconstruction of Tsunami Inland Propagation on December 26, 2004 in Banda Aceh, Indonesia, Through Field Investigations
,”
Pure Appl. Geophys.
0033-4553,
166
, pp.
259
281
.
6.
Yeh
,
H.
,
Liu
,
P. L.-F.
,
Briggs
,
M.
, and
Synolakis
,
C. E.
, 1994, “
Tsunami Catastrophe in Babi Island
,”
Nature (London)
0028-0836,
372
, pp.
6503
6508
.
7.
Minoura
,
K.
,
Imamura
,
F.
,
Takahashi
,
T.
, and
Shuto
,
N.
, 1997, “
Sequence of Sedimentation Processes Caused by the 1992 Flores Tsunami: Evidence From Babi Island
,”
Geology
0091-7613,
25
(
6
), pp.
523
526
.
8.
Titov
,
V. V.
, and
Synolakis
,
C. E.
, 1998, “
Numerical Modelling of Tidal Wave Runup
,”
J. Waterway, Port, Coastal, Ocean Eng.
0733-950X,
124
(
4
), pp.
157
171
.
9.
Wei
,
Y.
,
Mao
,
X. Z.
, and
Cheung
,
K. F.
, 2006, “
Well-Balanced Finite-Volume Model for Long-Wave Runup
,”
J. Waterway, Port, Coastal, Ocean Eng.
0733-950X,
132
(
2
), pp.
114
124
.
10.
Chen
,
Q.
,
Kirby
,
J. T.
,
Dalrymple
,
R. A.
,
Kennedy
,
A. B.
, and
Chawla
,
A.
, 2000, “
Boussinesq Modelling of Wave Transformation, Breaking, and Runup. II: 2D
,”
J. Waterway, Port, Coastal, Ocean Eng.
0733-950X,
126
(
1
), pp.
48
56
.
11.
Fuhrman
,
D. R.
, and
Madsen
,
P. A.
, 2008, “
Simulation of Nonlinear Wave Run-Up With a High-Order Boussinesq Model
,”
Coastal Eng.
0378-3839,
55
, pp.
139
154
.
12.
Jacaranda
, 2002,
Jacaranda Atlas of the Pacific Islands
,
Wiley
,
Brisbane, Australia
.
13.
Madsen
,
P. A.
, and
Sørensen
,
O. R.
, 1992, “
A New Form of the Boussinesq Equations With Improved Linear Dispersion Characteristics. Part 2. A Slowly-Varying Bathymetry
,”
Coast. Eng.
,
18
(
3–4
), pp.
183
204
.
14.
Borthwick
,
A. G. L.
,
Ford
,
M.
,
Weston
,
B. P.
,
Taylor
,
P. H.
, and
Stansby
,
P. K.
, 2006, “
Solitary Wave Transformation, Breaking and Run-Up at a Beach
,”
Journal of Maritime Engineering
,
159
, pp.
97
105
.
15.
Ning
,
D. Z.
,
Zang
,
J.
,
Liang
,
Q.
,
Taylor
,
P. H.
, and
Borthwick
,
A. G. L.
, 2008, “
Boussinesq Cut-Cell Model for Non-Linear Wave Interaction With Coastal Structures
,”
Int. J. Numer. Methods Fluids
0271-2091,
57
, pp.
1459
1483
.
16.
Strang
,
G.
, 1968, “
On the Construction and Comparison of Finite Difference Schemes
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
0036-1429,
5
, pp.
506
517
.
17.
Bradford
,
S. F.
, and
Sanders
,
B. F.
, 2002, “
Finite Volume Schemes for the Boussinesq Equations
,”
Proceedings of the Fourth International Symposium on Ocean Wave Measurement and Analysis—Waves 2001
, San Francisco, CA.
18.
Davis
,
S. F.
, 1984, “
TVD Finite Difference Schemes and Artificial Viscosity
,”
National Aeronautics and Space Administration
, ICASE Report No. 84-20.
19.
Liang
,
D.
,
Lin
,
B.
, and
Falconer
,
R. A.
, 2007, “
Simulation of Rapidly Varying Flow Using an Efficient TVD-MacCormack Scheme
,”
Int. J. Numer. Methods Fluids
0271-2091,
53
, pp.
811
826
.
20.
Godunov
,
S. K.
, 1959, “
A Difference Scheme for Numerical Solution of Discontinuous Solution of Hydrodynamic Equations
,”
Matematicheskii Sbornik
0368-8666,
47
, pp.
271
306
.
21.
Liang
,
D.
, 2010, “
Eliminating Discharge Imbalances in Predicting Shallow Water Flows With Shocks
,”
Hong Kong Inst. Eng. Trans.
1023-697X,
17
(
4
), pp.
55
60
.
22.
Romer-Lee
,
J. K.
, 2010, “
Modelling Tsunami Run-Up on Circular Islands
,” MEng thesis, University of Cambridge, Cambridge, UK.
23.
Liang
,
D.
,
Wang
,
X.
,
Falconer
,
R. A.
, and
Bockelmann-Evans
,
B. N.
, 2010, “
Solving the Depth-Integrated Solute Transport Equation With a TVD-MacCormack Scheme
,”
Environ. Modell. Software
1364-8152,
25
, pp.
1619
1629
.
You do not currently have access to this content.