Abstract

Several nuclear facilities are currently being decommissioned in France, on CEA and EDF sites. The decommissioning process as a whole, with cutting operations and nuclear waste management presents workers with significant risks of exposure. The aim of this study was therefore to improve risk assessments of internal exposure in operations where the main uncertainties are the removal factor and the airborne release factor. A new method is presented to assess the risk of internal exposure and optimize the choice of personal protective equipment to use during nuclear dismantling operations. The main forces and parameters influencing the level of labile contamination and particle resuspension were identified from a literature review and feedback. A manageable set of parameters was then obtained based on literature data and on-site information. The effects of the drying temperature, relative humidity, roughness of the contaminated surface, and wiping pressure were thus investigated on labile contamination and removal factor measurements. Successive wipings with cotton pads were performed on surfaces contaminated with simulated contaminants to estimate the influence of the different parameters. Results highlight the importance of surface roughness over the other considered parameters.

References

1.
AFNOR
,
2017
, “
Mesurage de la radioactivité-Mesurage et Évaluation de la Contamination de surface-Partie 2: Méthode D'essai Utilisant Des Échantillons D'essai de Frottis
,” AFNOR, Standard No. NF ISO 7503-2: 2016–06.https://www.boutique.afnor.org/fr-fr/norme/nf-iso-75032/mesurage-de-la-radioactivite-mesurage-et-evaluation-de-la-contamination-de-/fa175050/1647
2.
Cettier
,
J.
,
Bayle
,
M. L.
,
Béranger
,
R.
,
Billoir
,
E.
,
Nuckols
,
J. R.
,
Combourieu
,
B.
, and
Fervers
,
B.
,
2015
, “
Efficiency of Wipe Sampling on Hard Surfaces for Pesticides and PCB Residues in Dust
,”
Sci. Total Environ.
,
505
, pp.
11
21
.10.1016/j.scitotenv.2014.09.086
3.
Passo
,
C.
, and
Edler
,
R.
,
2014
,
Improve Results Obtained From Swipe Assays
,
PerkinElmer
.https://resources.perkinelmer.com/labsolutions/resources/docs/app_abaswipeassays.pdf
4.
Verkouteren
,
J. D.
,
Coleman
,
J. L.
,
Fletcher
,
R. A.
,
Smith
,
W. J.
,
Klouda
,
G. A.
, and
Gillen
,
G.
,
2008
, “
A Method to Determine Collection Efficiency of Particles by Swipe Sampling
,”
Meas. Sci. Technol.
,
19
(
11
), pp.
115101
115113
.10.1088/0957-0233/19/11/115101
5.
Klein
,
R.
,
Linins
,
I.
, and
Gershey
,
E. L.
,
1992
, “
Detecting Removable Surface Contamination
,”
Health Phys. Soc.
,
62
(
2
), pp.
186
189
.10.1097/00004032-199202000-00010
6.
Verkouteren
,
J. R.
,
Ritchie
,
N. W. M.
, and
Gillen
,
G.
,
2013
, “
Use of Force-Sensing Array Films to Improve Surface Wipe Sampling
,”
Environ. Sci. Processes Impacts
,
15
(
2
), pp.
373
380
.10.1039/C2EM30644A
7.
Robinson
,
R. L.
,
Sisco
,
E.
,
Staymates
,
M. E.
, and
Lawrence
,
J. A.
,
2018
, “
A New Wipe-Sampling Instrument for Measuring the Collection Efficiency of Trace Explosives Residues
,”
Anal. Methods
,
10
(
2
), pp.
204
213
.10.1039/C7AY02694C
8.
Jung
,
H.
,
Kunze
,
J. F.
, and
Nurrenbern
,
J. D.
,
2001
, “
Consistency and Efficiency of Standard Swipe Procedures Taken on Slightly Radioactive Contaminated Metal Surfaces
,”
Radiat. Saf. J.
,
80
(
5
), pp.
80
88
.10.1097/00004032-200105001-00011
9.
Ranade
,
M. B.
,
1987
, “
Adhesion and Removal of Fine Particles on Surface
,”
Aerosol Sci. Technol.
,
7
(
2
), pp.
161
176
.10.1080/02786828708959155
10.
Warren
,
L.
,
2007
,
An Investigation Into the Pick-Up Factors of Wipes on Various Laboratory-Type Surfaces
,
Department of Physics, University of Surrey
, Guildford,
UK
.
11.
Shoji
,
M.
,
Kondo
,
T.
,
Kijima
,
A.
,
Shibao
,
Y.
,
Nakajima
,
T.
,
Yamada
,
K.
, and
Nemoto
,
N.
,
2010
, “
Removal Characteristics of Wipe Devices Under Various Conditions
,”
Radiat. Saf. J.
,
99
(
2
), pp.
S136
S142
.10.1097/HP.0b013e3181d9ee6c
12.
Quérel
,
A.
,
Lemaitre
,
P.
,
Monier
,
M.
,
Porcheron
,
E.
,
Flossmann
,
A. I.
, and
Hervo
,
M.
,
2014
, “
An Experiment to Measure Raindrop Collection Efficiencies: Influence of Rear Capture
,”
Atmos. Meas. Tech.
,
7
(
5
), pp.
1321
1330
.10.5194/amt-7-1321-2014
13.
Tianmao
,
L.
,
Rongyu
,
C.
, and
Ping
,
H.
,
2015
, “
Temperature Dependence of Microscale Adhesion Force Between Solid Surfaces Using an AFM
,”
J. Adhes. Sci. Technol.
,
29
(
2
), pp.
133
148
.10.1080/01694243.2014.977698
You do not currently have access to this content.