Abstract

Copper is an important material for the nuclear industry; therefore, the correct copper cross section are essential. This paper deals with benchmarking the fast neutron leakage spectrum from a copper block with an intense 252Cf source. The spectrum was measured by the proton recoil method using a stilbene scintillator and spectrometer with pulse shape discrimination. The room effect was subtracted experimentally by shielding cone and confirmed computationally. Simulations were performed using the MCNP6.2 Monte Carlo code. A detailed study on uncertainties has been made. Consequently, as the main source of uncertainties, the measurement apparatus was determined (namely, calibration and number of iterations—up to 15%). From the parameter uncertainty, the most important effects are connected with the mass of cube material—the thickness of the assembly (up to 2%). The effect of copper density uncertainty is low because density was determined experimentally with low uncertainty. The uncertainty related to parameter uncertainties in source structural components is negligible because even neglection of all components leads to a shift in leakage spectra below 7%. Several copper nuclear data libraries were tested as well, and it was found that the calculation with JEFF-3.3 gives the most discrepant results with a discrepancy of up to 60%. The closest results were obtained with ENDF/B-VIII.0 (below 5 MeV, discrepancy within 10%) and JENDL-4.0 (above 5 MeV, discrepancy within 15%). ENDF/B-VII.1 library is relatively close in the region above 5 MeV (discrepancy within 15%), below 5 MeV the agreement is worse (up to 40% discrepancy).

References

1.
Rosborg
,
B.
, and
Werme
,
L.
,
2008
, “
The Swedish Nuclear Waste Program and the Long-Term Corrosion Behaviour of Copper
,”
J. Nucl. Mater.
,
379
(
1–3
), pp.
142
153
.10.1016/j.jnucmat.2008.06.025
2.
Zinet
,
M.
,
Ghazal
,
R.
,
Issard
,
H.
, and
Bardon
,
O.
,
2019
, “
Spent Fuel Transportation Cask Under Accidental Fire Conditions: Numerical Analysis of Gas Transport Phenomena Affecting Heat Transfer in Shielding Materials
,”
Prog. Nucl. Energy
,
117
, p.
103045
.10.1016/j.pnucene.2019.103045
3.
Singh
,
S.
,
Kumar
,
M.
,
Sodhi
,
G. P. S.
,
Buddu
,
R. K.
, and
Singh
,
H.
,
2018
, “
Development of Thick Copper Claddings on SS316 L Steel for in-Vessel Components of Fusion Reactors and Copper-Cast Iron Canisters
,”
Fusion Eng. Des.
,
128
, pp.
126
137
.10.1016/j.fusengdes.2018.01.076
4.
Li
,
M.
, and
Zinkle
,
S. J.
,
2012
, “
Physical and Mechanical Properties of Copper and Copper Alloys
,”
Comprehensive Nuclear Materials
,
R. J. M.
Konings
, ed.,
Elsevier
,
Oxford
, UK, pp.
667
690
.
5.
Schulc
,
M.
,
Košťál
,
M.
,
Novák
,
E.
, and
Šimon
,
J.
,
2021
, “
Copper Neutron Transport libraries validation by Means of a 252Cf Standard Neutron Source
,”
Nucl. Eng. Technol.
,
53
(
10
), pp.
3151
3157
.10.1016/j.net.2021.04.029
6.
Schulc
,
M.
,
Košťál
,
M.
,
Matěj
,
Z.
,
Czakoj
,
T.
, and
Novák
,
E.
,
2022
, “
Fast Neutron Spectra Measurement in a Copper Using a 252Cf Standard Neutron Source
,”
Radiat. Phys. Chem.
,
192
, p.
109871
.10.1016/j.radphyschem.2021.109871
7.
Schulc
,
M.
,
Košťál
,
M.
,
Novák
,
E.
,
Kubín
,
R.
, and
Šimon
,
J.
,
2019
, “
Application of 252Cf Neutron Source for Precise Nuclear Data Experiments
,”
Appl. Radiat. Isot.
,
151
, pp.
187
195
.10.1016/j.apradiso.2019.06.012
8.
Matěj
,
Z.
,
2014
,
Digitalization of Spectrometric System for Mixed Field of Radiation
,
LAP Lambert Academic Publishing
,
Saarbrücken
.
9.
Veškrna
,
M.
,
Matěj
,
Z.
,
Mravec
,
F.
,
Přenosil
,
V.
,
Cvachovec
,
F.
, and
Košťál
,
M.
,
2014
, “
Digitalized Two Parametric System for Gamma/Neutron Spectrometry
,”
RPSD 2014: 18th Topical Meeting of the Radiation Protection & Shielding Division of ANS18th Topical Meeting of the Radiation Protection & Shielding Division of ANS
,
American Nuclear Society, Inc
.,
La Grange Park, IL
, pp.
14
18
.
10.
Cvachovec
,
J.
, and
Cvachovec
,
F.
,
2008
, “
Maximum Likelihood Estimation of a Neutron Spectrum and Associated Uncertainties
,”
Adv. Mil. Technol.
,
3
(
2
), pp.
67
79
.https://www.aimt.cz/index.php/aimt/article/view/1668
11.
Schulc
,
M.
,
Košťál
,
M.
,
Novák
,
E.
, and
Rypar
,
V.
,
2019
, “
Measuring Neutron Leakage Spectra Using Spherical Benchmarks With 252Cf Source in Its Centers
,”
Nucl. Instrum. Methods Phys. Res. Sect. A
,
914
, pp.
53
56
.10.1016/j.nima.2018.10.164
12.
Werner
,
C. J.
,
Bull
,
J. S.
,
Solomon
,
C. J.
,
Brown
,
F. B.
,
McKinney
,
G. W.
,
Rising
,
M. E.
,
Dixon
,
D. A.
, et al.,
2018
, “
MCNP Version 6.2 Release Notes
,”
Los Alamos National Laboratory
,
Los Alamos, NM
, Report No. LA-UR-18-20808.
13.
Chadwick
,
M. B.
,
Herman
,
M. W.
,
Obložinský
,
P.
,
Dunn
,
M. E.
,
Danon
,
Y.
,
Kahler
,
A. C.
,
Smith
,
D. L.
, et al.,
2011
, “
ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data
,”
Nucl. Data Sheets
,
112
(
12
), pp.
2887
2996
.10.1016/j.nds.2011.11.002
14.
Mauborgne
,
M.-L.
,
Radtke
,
R. J.
,
Stoller
,
C.
, and
Haranger
,
F.
,
2020
, “
Impact of the ENDF/B-VIII.0 Library on Modeling Nuclear Tools for Oil Exploration
,”
EPJ Web Conf.
,
239
, p.
20007
.10.1051/epjconf/202023920007
15.
Shibata
,
K.
,
Iwamoto
,
O.
,
Nakagawa
,
T.
,
Iwamoto
,
N.
,
Ichihara
,
A.
,
Kunieda
,
S.
,
Chiba
,
S.
, et al.,
2011
, “
JENDL-4.0: A New Library for Nuclear Science and Engineering
,”
J. Nucl. Sci. Technol.
,
48
(
1
), pp.
1
30
.10.1080/18811248.2011.9711675
16.
Plompen
,
A. J. M.
,
Cabellos
,
O.
,
De Saint Jean
,
C.
,
Fleming
,
M.
,
Algora
,
A.
,
Angelone
,
M. L.
,
Archier
,
P.
, et al.,
2020
, “
The Joint Evaluated Fission and Fusion Nuclear Data Library, JEFF-3.3
,”
Eur. Phys. J. A
,
56
(
7
), p.
181
.10.1140/epja/s10050-020-00141-9
You do not currently have access to this content.