Abstract

Following the Fukushima Nuclear Power Plant accident in 2011, it has become increasingly important for reactor safety designs to consider measures that can prevent the occurrence of severe accidents. This report proposes a novel subassembly-type passive reactor shutdown device that expands the diversity and robustness of core disruptive accident (CDA) prevention strategies for sodium-cooled fast reactors. The developed device contains pins with a fuel material that is in the solid state during normal operation but melts into a liquid when the temperature exceeds a certain value (i.e., during a potential accident). When an unprotected loss of flow (ULOF) or unprotected transient overpower (UTOP) accident occurs, the device can passively provide significant negative reactivity by rapidly transferring liquefied device fuel into the lower plenum region of the pins via gravitation alone. The reactors containing some of the proposed devices in place of original fuel subassemblies become subcritical before the driver fuels are damaged, even if ULOF or UTOP transient events occur. The present study evaluates candidate materials for device fuels (e.g., metallic alloy, chloride), optimal device pin structures for liquefied fuel relocation, and nuclear and thermal-hydraulic characteristics of the device-loaded core under accident conditions to demonstrate the engineering applicability of the proposed device. This report discusses preliminary results regarding the nuclear requirements for inducing negative reactivity to achieve reactor shutdown under the expected device conditions during an accident.

References

1.
Ruggieri
,
J.-M.
,
Ren
,
L.
,
Glatz
,
J.-P.
,
Ashurko
,
I.
,
Hayafune
,
H.
,
Kim
,
Y.
, and
Hill
,
H.
,
2017
, “
Sodium-Cooled Fast Reactor (SFR) System Safety Assessment, Generation IV International Forum
,” accessed Feb. 11, 2023, https://www.gen-4.org/gif/upload/docs/application/pdf/2017-11/gif-sfr-safetyassessment-20170427_final.pdf
2.
International Atomic Energy Agency
,
2016
,
Safety of Nuclear Power Plants: Design
(IAEA Safety Standard Series No. SSR-2/1 (Rev. 1),
International Atomic Energy Agency
,
Vienna, Austria
,
71
pp.
3.
Sowa
,
E. S.
,
Barthold
,
W. P.
,
Eggen
,
D. T.
,
Huebotter
,
P. R.
,
Josephson
,
J.
,
Pizzica
,
P. A.
,
Turski
,
R. B.
, and
van Erp
,
J. B.
,
1976
, “
LMFBR Self-Actuated Shutdown Systems
,”
Proceedings of the International Meeting on Fast Reactor Safety and Related Physics, Chicago, IL,
October 5–8, pp.
673
682
.
4.
Burke
,
T. M.
,
1998
,
Summary of FY 1997 Work Related to JAPC-U.S. DOE Contract Study on Improvement of Core Safety – Study on GEM (III), HNF-2195-VA
, Fluor Daniel Hanford, Inc., Richland, WA,
32
pp.
5.
Tentner
,
A. M.
,
Parma
,
E.
,
Wei
,
T.
, and
Wigeland
,
R.
,
2016
,
Severe Accident Approach – Final Report Evaluation of Design Measures for Severe Accident Prevention and Consequence Mitigation
,
Argonne National Laboratory
,
Chicago, IL
, Report No. ANL-GENIV-128,
116
pp.
6.
International Atomic Energy Agency
,
2020
,
Passive Shutdown Systems for Fast Neutron Reactors
(IAEA Nuclear Energy Series No. NR-T-1.16),
International Atomic Energy Agency
,
Vienna, Austria
,
110
pp.
7.
Sciora
,
P.
,
Blanchet
,
D.
,
Buiron
,
L.
,
Fontaine
,
B.
,
Vanier
,
M.
,
Varaine
,
F.
,
Venard
,
C.
,
Massara
,
S.
,
Scholer
,
A. C.
, and
Verrier
,
D. P.
,
2011
, “
Low Void Effect Core Design Applied on 2400 MWth SFR Reactor
,” Proceedings of 2011 International Congress on Advances in Nuclear Power Plants (
ICAPP 2011
), Nice, France, May 2–6, Paper No. 11048, pp.
487
495
.https://www.researchgate.net/publication/299533268_Low_void_effect_core_design_applied_on_2400_MWth_SFR_reactor
8.
Endo
,
H.
,
Kawashima
,
M.
,
Suzuki
,
M.
,
Ninokata
,
H.
,
Sawada
,
T.
,
Shimizu
,
A.
, and
Fujii-e
,
Y.
,
1998
, “
Safety Characteristics of the SCNES Core
,”
Prog. Nucl. Energy
,
32
(
3–4
), pp.
689
696
.10.1016/S0149-1970(97)00081-4
9.
Maschek
,
W.
,
Flad
,
M.
,
Boccaccini
,
C. M.
,
Wang
,
S.
,
Gabrielli
,
F.
,
Kriventsev
,
V.
,
Chen
,
X.
,
Zhang
,
D.
, and
Morita
,
K.
,
2011
, “
Prevention and Mitigation of Severe Accident Developments and Recriticalities in Advanced Fast Reactor Systems
,”
Prog. Nucl. Energy
,
53
(
7
), pp.
835
841
.10.1016/j.pnucene.2011.04.008
10.
Japan Atomic Energy Agency,
2006
,
Feasibility Study on Commercialized Fast Reactor Cycle Systems Technical Study Report of Phase II, - (1) Fast Reactor Plant Systems
,
Japan Atomic Energy Agency
,
Ibaraki, Japan
, JAEA-Research 2006-042,
45
pp. (in Japanese).
11.
Hayafune
,
H.
,
Sakamoto
,
Y.
,
Kotake
,
S.
,
Aoto
,
K.
,
Ohshima
,
J.
, and
Ito
,
T.
,
2011
, “
Conceptual Design Study for the Demonstration Reactor of JSFR: (1) Current Status of JSFR Development
,” Proceedings of the 19th International Conference on Nuclear Engineering (
ICONE-19
), Chiba, Japan, May 16–19, ICONE19-44140, p.
9
.10.1299/jsmeicone.2011.19._ICONE1944_46
12.
Sugino
,
K.
,
Jin
,
T.
,
Hazam
,
T.
, and
Numata
,
K.
,
2012
,
Preparation of Fast Reactor Group Constant Sets UFLIB.J40 and JFS-3-J4.0 Based on the JENDL-4.0 Data
,
Japan Atomic Energy Agency
,
Ibaraki, Japan
, January, Report No. JAEA-Data/Code 2011-017,
52
pp. (in Japanese).
13.
Shibata
,
K.
,
Iwamoto
,
O.
,
Nakagawa
,
T.
,
Iwamoto
,
N.
,
Ichihara
,
A.
,
Kunieda
,
S.
,
Chiba
,
S.
,
Furutaka
,
K.
,
Otuka
,
N.
,
Ohsawa
,
T.
,
Murata
,
T.
,
Matsunobu
,
H.
,
Zukeran
,
A.
,
Kamada
,
S.
, and
Katakura
,
J.
,
2011
, “
JENDL-4.0: A New Library for Nuclear Science and Engineering
,”
J. Nucl. Sci. Technol.
,
48
(
1
), pp.
1
30
.10.1080/18811248.2011.9711675
14.
Nakagawa
,
M.
, and
Tsuchihashi
,
K.
,
1984
,
SLAROM: A Code for Cell Homogenization Calculation of Fast Reactor
,
Japan Atomic Energy Research Institute
,
Ibaraki, Japan
, Report No. JAERI-1294,
90
pp.
15.
Derstine
,
K. L.
,
1984
,
DIF3D: A Code to Solve One-, Two-, and Three-Dimensional Finite Difference Diffusion Theory Problems
,
Argonne National Laboratory
,
Argonne, Chicago, IL
, Report No. ANL-82-64,
294
pp.
16.
Endo
,
H.
,
Kumaoka
,
Y.
,
Golan
,
S.
, and
Nakagawa
,
H.
,
1992
, “
Passive Safety Features of a Bottom Supported Fast Breeder Reactor Vessel
,”
Nucl. Technol.
,
99
(
3
), pp.
318
329
.10.13182/NT92-A34716
You do not currently have access to this content.