Abstract

Small modular reactors (SMRs) are a popular topic with a significant number of designs with a wide range of sizes. The motivation of this type of work is to find alternative uses for the SMRs so that the thermal energy is more effectively used and hence the SMR is more economical. This work is similar in that it studies the synergy that might exist between a remote community and the SMR. Most work for SMRs is related to remote communities with the impact as one-way, that is the benefit of the SMR to the community yet the SMR is a separate plant. The consideration here is that the SMR could be used to burn the nonnuclear waste products of the community and return useful products. An example is the plastics generated by the community can be converted into usable synthetic fuel, such as kerosene, by using the heat energy of the SMR. The SMR then has a dependency on the community waste stream. In this manner, the environmental load of the community is reduced yet the community also obtains a locally produced fuel that could be used for heating or transport outside of the community. Considering that diesel fuel costs can be extremely high in remote communities, methods to reduce the fuel costs, including the manufacture of their own fuel, can result in a synergistic or symbiotic relationship between the community and the SMR and the community can then have a centralized energy area for supporting neighboring communities.

References

1.
Advanced Reactor Information System (ARIS)
,
2012
,
Status of Small and Medium Sized Reactor Designs
,
IAEA
, Vienna, Austria.
2.
Ingersoll
,
D.
,
Houghton
,
Z.
,
Bromm
,
R.
, and
Desportes
,
C.
,
2014
, “
NuScale Small Modular Reactor for Co-Generation of Electricity and Water
,”
Desalination
,
340
(
1
), pp.
84
93
.10.1016/j.desal.2014.02.023
3.
Ball
,
J.
,
2018
, “
Cost Competitive With Gas
,”
Nucl. Plant J.
,
36
(
3
), pp.
24
25
.
4.
Kostin
,
V. I.
,
Panov
,
Y. K.
,
Polunichev
,
V. I.
, and
Shamanin
,
I. E.
,
2007
, “
Floating Power-Generating Unit With a KLT-40S Reactor System for Desalinating Sea Water
,”
At. Energy
,
102
(
1
), pp.
31
35
.10.1007/s10512-007-0004-4
5.
Tashakor
,
S.
,
Zarifi
,
E.
, and
Naminazari
,
M.
,
2017
, “
Neutronic Simulation of CAREM-25 Small Modular Reactor
,”
Prog. Nucl. Energy
,
99
(
1
), pp.
185
195
.10.1016/j.pnucene.2017.05.016
6.
Usui
,
N.
,
Matsuda
,
A.
,
Ohno
,
J.
,
Iwaki
,
C.
,
Sebe
,
F.
, and
Watanabe
,
H.
,
2012
, “
The Validation of the 4S Safety Analysis Code for Loss of Offsite Power Event
,”
ASME
Paper No. ICONE20-POWER2012-54963.10.1115/ICONE20-POWER2012-54963
7.
Wade
,
D. C.
, and
Walters
,
L.
,
2010
, “
ARC-100: A Sustainable, Modular Nuclear Plant for Emerging Markets
,”
Proceedings of ICAPP'10
, San Diego, CA, June 13–17, Paper No. 10079.https://static1.squarespace.com/static/5b980789a9e0284111acc818/t/5ba143bd70a6ad16f1bc6359/1537295297662/arc-100-a-sustainable-modular-nuclear-plant-for-emerging-markets.pdf
8.
Mochizuki
,
H.
,
2020
, “
Neutronics and Thermal-Hydraulics Coupling Analysis Using the FLUENT Code and the RELAP5-3D Code for a Molten Salt Fast Reactor
,”
Nucl. Eng. Des.
,
368
, p.
110793
.10.1016/j.nucengdes.2020.110793
9.
Mignacca
,
B.
, and
Locatelli
,
G.
,
2020
, “
Economics and Finance of Molten Salt Rectors
,”
Prog. Nucl. Energy
,
129
, p.
103503
.10.1016/j.pnucene.2020.103503
10.
Harvel
,
G.
, and
Meneley
,
D.
,
2014
, “
Balance of Plant Design Issues for Small Reactors in Canada
,”
19th Pacific Basin Nuclear Conference
, Vancouver BC, Aug. 24–28, Paper No. PBNC2014-382.https://www.osti.gov/etdeweb/biblio/22670368
11.
Harvel
,
G.
,
2018
, “
Community and Siting Impacts on Small Modular Reactor Operability and Design
,”
Pacific Basin Nuclear Conference
, San Francisco CA, Sept. 30–Oct. 4, pp.
493
500
, Paper No. PBNC2018-25904.
12.
Arthurs
,
C.
,
Doxtator
,
A.
,
Mann
,
D.
,
Mann
,
S.
, and
Harvel
,
G.
,
2017
, “
Design of an Assessment Tool for Site Evaluation of Nuclear Power Plants
,” Proceedings of the 25th International Conference on Nuclear Engineering, Shanghai, China, July 2–6, Paper No.
ICONE25-67579
.10.1115/ICONE25-67579
13.
Boarin
,
S.
, and
Ricotti
,
M. E.
,
2012
, “
Economic Performance and Extended Capabilities of SMRs
,”
20th International Conference on Nuclear Engineering
, Anaheim, CA, July 30–Aug. 3, Paper No. ICONE20-POWER2012-54983.http://b-dig.iie.org.mx/BibDig2/P12-0251/data/pdfs/trk-5/ICONE20-POWER2012-54983.pdf
14.
Kuznetsov
,
V.
,
2008
, “
Design and Technology Development Status and Design Considerations for Innovative Small and Medium Sized Reactors
,”
ASME
Paper No. ICONE-16-48084.10.1115/ICONE16-48084
15.
Vujic
,
J.
,
Bergmann
,
R.
,
Skoda
,
R.
, and
Miletic
,
M.
,
2012
, “
Small Modular Reactors: Simpler, Safer, Cheaper?
,”
Energy
,
45
(
1
), pp.
288
295
.10.1016/j.energy.2012.01.078
16.
2016
,
Hatch
, “
Feasibility of the Potential Deployment of Small Modular Reactors (SMRs) in Ontario
,” Ontario Ministry of Energy, Canada, Report No. H350381-00000-162-066-000.
17.
Giroux
,
L.
,
2014
, “
Status of Waste Management in Canada
,”
Giroux Environmental Consulting Report PM
,
Canadian Council of Ministers of Environment
, Government of Canada, Canada, Report No. 1528.
18.
McDonald
,
T.
,
Achari
,
G.
, and
Abiola
,
A.
,
2008
, “
Feasibility of Increased Biogas Production From the Co-Digestion of Agricultural, Municipal, and Agr-Oindustrial Wastes in Rural Communities
,”
J. Environ. Eng. Sci.
,
7
(
4
), pp.
263
275
.10.1139/S08-001
19.
Government of Canada,
2017
,
Solid Waste Management for Northern and Remote Communities: Planning and Technical Guidance Document
,
Government of Canada
, Canada.
20.
Hanson
,
J. L.
,
Yesiller
,
N.
,
Von Stockhausen
,
S. A.
, and
Wong
,
W. W.
,
2010
, “
Compaction Characteristics of Municipal Solid Waste
,”
J. Geotech. Geoenviron. Eng.
,
136
(
8
), pp.
1
8
.https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29GT.1943-5606.0000324
21.
Keske
,
C. M. H.
,
Mills
,
M.
,
Godfrey
,
T.
,
Tanguay
,
L.
, And., and
Dicker
,
J.
,
2018
, “
Waste Management in Remote Rural Communities Across the Canadian North: Challenges and Opportunities
,”
Multidiscip. J. Waste Resour. Residues
,
2
(
1
), pp.
63
77
.10.31025/2611-4135/2018.13641
22.
Keske
,
C. M. H.
,
Mills
,
M.
,
Tanguay
,
L.
, and
Dicker
,
J.
,
2018
, “
Waste Management in Labrador and Northern Communities: Opportunities and Challenges
,”
Northern Rev.
,
47
, pp.
79
112
.10.22584/nr47.2018.005
23.
Taghipour
,
H.
,
Amjad
,
Z.
,
Aslani
,
H.
,
Armanfar
,
F.
, and
Dehghanzadeh
,
R.
,
2015
, “
Characterizing and Quantifying Solid Waste of Rural Communities
,”
J. Mater Cycles Waste Manag.
, 18(4), pp.
790
797
.10.1007/s10163-015-0365-z
24.
Wong
,
W. W.
,
2009
, “
Investigation of Geotechnical Properties of Municipal Solid Waste
,” M.Sc. thesis,
California Polytechnic State University
,
San Luis Odispo, CA
.
25.
Sokka
,
L.
,
Antikainen
,
R.
, and
Kauppi
,
P. E.
,
2007
, “
Municipal Solid Waste Production and Composition in Finland—Changes in the Period 1960–2002 and Prospects Until 2020
,”
Resour. Conserv. Recycl.
,
50
(
4
), pp.
475
488
.10.1016/j.resconrec.2007.01.011
26.
Roberts
,
C. L.
,
Watkin
,
G. D.
,
Ezeah
,
C.
,
Phillips
,
P. S.
, and
Odunfa
,
A.
,
2010
, “
Seasonal Variation and Municipal Solid Waste Composition—Issues for Development of New Waste Management Strategies in Abuja, Nigeria
,”
J. Solid Waste Technol. Manage.
,
36
(
4
), pp.
210
220
.10.5276/JSWTM.2010.210
27.
Abylkhani
,
B.
,
Guney
,
M.
,
Aiymbetov
,
B.
,
Yagofarova
,
A.
,
Sarbassov
,
Y.
,
Zorpas
,
A. A.
,
Venetis
,
C.
, and
Inglezakis
,
V.
,
2020
, “
Detailed Municipal Solid Waste Composition Analysis for Nur-Sultan City, Kazakhstan With Implications for Sustainable Waste Management in Central Asia
,”
Environ. Sci. Pollut. Res. Intl.
, 28(19), pp.
24406
24418
.10.1007/s11356-020-08431-x
28.
Edjabou
,
M. E.
,
Jensen
,
M. B.
,
Götze
,
R.
,
Pivnenko
,
K.
,
Petersen
,
C.
,
Scheutz
,
C.
, and
Astrup
,
T. F.
,
2015
, “
Municipal Solid Waste Composition: Sampling Methodology, Statistical Analyses, and Case Study Evaluation
,”
Waste Manage.
,
36
, pp.
12
23
.10.1016/j.wasman.2014.11.009
29.
Chen
,
Y.-C.
,
2018
, “
Effects of Urbanization on Municipal Solid Waste Composition
,”
Waste Manage.
,
79
, pp.
828
836
.10.1016/j.wasman.2018.04.017
30.
Consonni
,
S.
,
Giugliano
,
M.
, and
Grosso
,
M.
,
2005
, “
Alternative Strategies for Energy Recovery From Municipal Solid Waste Part A: Mass and Energy Balances
,”
Waste Manage.
,
25
(
2
), pp.
123
135
.10.1016/j.wasman.2004.09.007
31.
Consonni
,
S.
,
Giugliano
,
M.
, and
Grosso
,
M.
,
2005
, “
Alternative Strategies for Energy Recovery From Municipal Solid Waste Part B: Emission and Cost Estimates
,”
Waste Manage.
,
25
(
2
), pp.
137
148
.10.1016/j.wasman.2004.09.006
32.
Wang
,
Z.
,
Ren
,
J.
,
Goodsite
,
M. E.
, and
Xu
,
G.
,
2018
, “
Waste-to-Energy, Municipal Solid Waste Treatment, and Best Available Technology: Comprehensive Evaluation by an Interval-Valued Fuzzy Multi-Criteria Decision Making Method
,”
J. Cleaner Prod.
,
172
, pp.
887
899
.10.1016/j.jclepro.2017.10.184
33.
Holmgren
,
K.
, and
Henning
,
D.
,
2004
, “
Comparison Between Material and Energy Recovery of Municipal Waste From an Energy Perspective: A Study of Two Swedish Municipalities
,”
Resour. Conserv. Recycl.
,
43
(
1
), pp.
51
73
.10.1016/j.resconrec.2004.05.001
34.
Nyashina
,
G. S.
,
Vershinina
,
K. Y.
,
Shlegel
,
N. E.
, and
Strizhak
,
P. A.
,
2019
, “
Effective Incineration of Fuel-Waste Slurries From Several Related Industries
,”
Environ. Res.
176
, p.
108559
.10.1016/j.envres.2019.108559
35.
Damodharan
,
D.
,
Kumar
,
B. R.
,
Gopal
,
K.
,
De Poures
,
M. V.
, and
Sethuramasamyraja
,
B.
,
2019
, “
Utilization of Waste Plastic Oil in Diesel Engines: A Review
,”
Rev. Environ. Sci. Biotechnol.
,
18
(
4
), pp.
681
697
.10.1007/s11157-019-09516-x
36.
Win
,
M. M.
,
Asari
,
M.
,
Hayakawa
,
R.
,
Hosoda
,
H.
,
Yano
,
J.
, and
Sakai
,
S.-I.
,
2019
, “
Characteristics of Gas From the Fluidized Bed Gasification of Refuse Paper and Plastic Fuel (RPF) and Wood Biomass
,”
Waste Manage.
,
87
, pp.
173
182
.10.1016/j.wasman.2019.02.002
37.
Zhang
,
X.
, and
Lei
,
H.
,
2016
, “
Synthesis of High-Density Jet Fuel From Plastics Via Catalytically Integral Processes
,”
RSC Adv.
,
6
(
8
), pp.
6154
6163
.10.1039/C5RA25327F
38.
Pieta
,
I.
,
Epling
,
W.
,
Kazmierczuk
,
A.
,
Lisowski
,
P.
,
Nowakowski
,
R.
, and
Serwicka
,
E.
,
2018
, “
Waste Into Fuel—Catalyst and Process Development for MSW Valorization
,”
Catalyst
,
8
(
3
), p.
113
.10.3390/catal8030113
39.
Wang
,
K.
,
Zheng
,
Y.
,
Zhu
,
X.
,
Brewer
,
C. E.
, and
Brown
,
R. C.
,
2017
, “
Ex-Situ Catalytic Pyrolysis of Wastewater Sewage Sludge—A Micro-Pyrolysis Study
,”
Bioresour. Technol.
,
232
, pp.
229
234
.10.1016/j.biortech.2017.02.015
40.
Liu
,
G.
,
Liao
,
Y.
,
Guo
,
S.
,
Xiaoqian
,
M.
,
Zeng
,
C.
, and
Wu
,
J.
,
2016
, “
Thermal Behavior and Kinetics of Municipal Solid Waste During Pyrolysis and Combustion Process
,”
Appl. Therm. Eng.
,
98
, pp.
400
408
.10.1016/j.applthermaleng.2015.12.067
41.
Panda
,
A. K.
,
Singh
,
R. K.
, and
Mishra
,
D. K.
,
2010
, “
Thermolysis of Waste Plastics to Liquid Fuel: A Suitable Method for Plastic Waste Management and Manufacture of Value Added Products – A World Perspective
,”
Renewable Sustain. Energy Rev.
,
14
(
1
), pp.
233
248
.10.1016/j.rser.2009.07.005
42.
C
,
M.
,
T
,
S.
, and
M
,
C.
,
2017
, “
A Review on Conversion Techniques of Liquid Fuel From Waste Plastic Materials
,”
Int. J. Energy Res.
,
41
(
11
), pp.
1534
1552
.10.1002/er.3720
43.
Lopez
,
G.
,
Artetxe
,
M.
,
Amutio
,
M.
,
Alvarez
,
J.
,
Bilbao
,
J.
, and
Olazar
,
M.
,
2018
, “
Recent Advances in the Gasification of Waste Plastics
, A Critical Reviews,”
Renewable Sustain. Energy Rev.
,
82
, pp.
576
596
.10.1016/j.rser.2017.09.032
44.
Thahir
,
R.
,
Altway
,
A.
,
Rachmann
,
S.
, and
Sustiano
,
J.
,
2019
, “
Production of Liquid Fuel From Plastic Waste Using Integrated Pyrolysis Method With Refinery Distillation Bubble Cap Plate Column
,”
Energy Rep.
,
5
, pp.
70
77
.10.1016/j.egyr.2018.11.004
45.
Chen
,
S.
,
Meng
,
A.
,
Long
,
Y.
,
Zhou
,
H.
,
Li
,
Q.
, and
Zhang
,
Y.
,
2015
, “
TGA Pyrolysis and Gasification of Combustible Municipal Solid Waste
,”
J. Energy Inst.
,
88
(
3
), pp.
332
343
.10.1016/j.joei.2014.07.007
You do not currently have access to this content.