Abstract

The long-term integrity of the bentonite buffer is of significant interest in the performance assessment (PA) of geological nuclear waste disposal. This study aims at understanding how the initial bentonite chemical composition and other geochemical parameters affect long-term chemical properties within the buffer, which will subsequently affect the transport. Using coupled thermal–hydrological–chemical (THC) models for migration of U(VI) in a generic repository, we performed a global sensitivity analysis (GSA) to identify the influence of each parameter on the temporal evolution of a spatially averaged distribution coefficient for the entire buffer. Such an analysis can be used in a repository-scale PA. In this work, we used the toughreact software to model coupled THC processes in a generic clay repository with bentonite buffer. In this model, U(VI) is released from a canister via schoepite dissolution, which is assumed to occur 1000 yr after closure. U(VI) migrates through the bentonite buffer affected by two-site protolysis nonelectrostatic surface complexation and cation exchange (2 SPNE SC/CE). GSA results showed that adsorption density on smectite, pH, volume fractions of smectite, calcite, and Ca+2 aqueous concentration all play a significant role in U(VI) transport, since roughly 80% of adsorbed U(VI) is absorbed by smectite, and Ca+2 affects the aqueous complexation with U(VI). This work demonstrates the complex process models' potential usefulness that can be transferred to the PA model. It also provides information needed to proceed with the development of a reduced-order model, which has the potential to optimize repository designs, site characterization, and performance confirmation.

References

1.
Campbell
,
J. E.
, and
Cranwell
,
R. M.
,
1988
, “
Performance Assessment of Radioactive Waste Repositories
,”
Science
,
239
(
4846
), pp.
1389
1392
.10.1126/science.3279510
2.
Rechard
,
R. P.
,
Wilson
,
M. L.
, and
Sevougian
,
S. D.
,
2014
, “
Progression of Performance Assessment Modeling for the Yucca Mountain Disposal System for Spent Nuclear Fuel and High-Level Radioactive Waste
,”
Reliab. Eng. Syst. Saf.
,
122
, pp.
96
123
.10.1016/j.ress.2013.06.026
3.
Pusch
,
R.
,
2003
,
The Buffer and Backfill Handbook. Part 3: Models for Calculation of Processes and Behaviour
,
Swedish Nuclear Fuel and Waste Management
, Stockholm, Sweden.https://www.osti.gov/etdeweb/servlets/purl/20711993
4.
Rutqvist
,
J.
,
Zheng
,
L.
,
Chen
,
F.
,
Liu
,
H.-H.
, and
Birkholzer
,
J.
,
2014
, “
Modeling of Coupled Thermo-Hydro-Mechanical Processes With Links to Geochemistry Associated With Bentonite-Backfilled Repository Tunnels in Clay Formations
,”
Rock Mech. Rock Eng.
,
47
(
1
), pp.
167
186
.10.1007/s00603-013-0375-x
5.
Zheng
,
L.
,
Rutqvist
,
J.
,
Liu
,
H.-H.
,
Birkholzer
,
J. T.
, and
Sonnenthal
,
E.
,
2014
, “
Model Evaluation of Geochemically Induced Swelling/Shrinkage in Argillaceous Formations for Nuclear Waste Disposal
,”
Appl. Clay Sci.
,
97–98
, pp.
24
32
.10.1016/j.clay.2014.05.019
6.
Birgersson
,
M.
, and
Karnland
,
O.
,
2009
, “
Ion Equilibrium Between Montmorillonite Interlayer Space and an External Solution—Consequences for Diffusional Transport
,”
Geochim. Cosmochim. Acta
,
73
(
7
), pp.
1908
1923
.10.1016/j.gca.2008.11.027
7.
Apted
,
M. J.
, and
Ahn
,
J.
,
2017
,
Geological Repository Systems for Safe Disposal of Spent Nuclear Fuels and Radioactive Waste
,
Woodhead Publishing
, Sawston, UK.https://www.sciencedirect.com/book/9781845695422/geological-repository-systems-for-safe-disposal-of-spent-nuclear-fuels-and-radioactive-waste#book-description
8.
Zheng
,
L.
,
Xu
,
H.
,
Rutqvist
,
J.
,
Reagan
,
M.
,
Birkholzer
,
J.
,
Villar
,
M. V.
, and
Fernández
,
A. M.
,
2020
, “
The Hydration of Bentonite Buffer Material Revealed by Modeling Analysis of a Long-Term In Situ Test
,”
Appl. Clay Sci.
,
185
, p.
105360
.10.1016/j.clay.2019.105360
9.
Krupka
,
K. M.
,
Kaplan
,
D. I.
,
Whelan
,
G.
,
Serne
,
R. J.
, and
Mattigod
,
S. V.
,
1999
, “
Understanding Variation in Partition Coefficient, Kd, Values, Volume II: Review of Geochemistry and Available Kd Values, for Cadmium, Cesium, Chromium, Lead, Plutonium, Radon, Strontium, Thorium, Tritium (3H), and Uranium
,” Office of Radiation and Indoor Air Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, DC and Office of Environmental Restoration U.S. Department of Energy, Washington, DC, No.
EPA 402-R-99-004B
.https://www.epa.gov/sites/production/files/2015-05/documents/402-r-99-004b.pdf
10.
Xu
,
T.
,
Sonnenthal
,
E.
,
Spycher
,
N.
, and
Zheng
,
L.
,
2014
, “
TOUGHREACT V3. 0-OMP Reference Manual: A Parallel Simulation Program for Non-Isothermal Multiphase Geochemical Reactive Transport
,”
University of California
,
Berkeley, CA
.
11.
Spycher
,
N.
, and
Sonnenthal
,
E.
,
2001
, “
Temperature Effects on Seepage Fluid Compositions at Yucca Mountain
,” Yucca Mountain Project, Las Vegas, NV, Report No. MOL.20010808.0254.
12.
Sonnenthal
,
E.
,
Spycher
,
N.
, and
Xu
,
T.
,
2003
, “
Linking Reaction, Transport, and Hydrological Parameters in Unsaturated Fractured Rock: TOUGHREACT Implementation and Application
,”
TOUGH Symposium
, Berkeley, CA, May 12–14, Lawrence Berkeley National Lab. (LBNL).https://escholarship.org/uc/item/37f0d52p
13.
Rutqvist
,
J.
,
Wu
,
Y.-S.
,
Tsang
,
C.-F.
, and
Bodvarsson
,
G.
,
2002
, “
A Modeling Approach for Analysis of Coupled Multiphase Fluid Flow, Heat Transfer, and Deformation in Fractured Porous Rock
,”
Int. J. Rock Mech. Min. Sci.
,
39
(
4
), pp.
429
442
.10.1016/S1365-1609(02)00022-9
14.
Rutqvist
,
J.
,
Ijiri
,
Y.
, and
Yamamoto
,
H.
,
2011
, “
Implementation of the Barcelona Basic Model Into TOUGH–FLAC for Simulations of the Geomechanical Behavior of Unsaturated Soils
,”
Comput. Geosci.
,
37
(
6
), pp.
751
762
.10.1016/j.cageo.2010.10.011
15.
Davis
,
J. A.
,
Meece
,
D. E.
,
Kohler
,
M.
, and
Curtis
,
G. P.
,
2004
, “
Approaches to Surface Complexation Modeling of Uranium(VI) Adsorption on Aquifer Sediments
,”
Geochim. Cosmochim. Acta
,
68
(
18
), pp.
3621
3641
.10.1016/j.gca.2004.03.003
16.
Fox
,
P. M.
,
Davis
,
J. A.
, and
Zachara
,
J. M.
,
2006
, “
The Effect of Calcium on Aqueous Uranium(VI) Speciation and Adsorption to Ferrihydrite and Quartz
,”
Geochim. Cosmochim. Acta
,
70
(
6
), pp.
1379
1387
.10.1016/j.gca.2005.11.027
17.
Boult
,
K. A.
,
Cowper
,
M. M.
,
Heath
,
T. G.
,
Sato
,
H.
,
Shibutani
,
T.
, and
Yui
,
M.
,
1998
, “
Towards an Understanding of the Sorption of U(VI) and Se(IV) on Sodium Bentonite
,”
J. Contam. Hydrol.
,
35
(
1–3
), pp.
141
150
.10.1016/S0169-7722(98)00122-3
18.
Gao
,
X.
,
Bi
,
M.
,
Shi
,
K.
,
Chai
,
Z.
, and
Wu
,
W.
,
2017
, “
Sorption Characteristic of Uranium(VI) Ion Onto K-Feldspar
,”
Appl. Radiat. Isot.
,
128
, pp.
311
317
.10.1016/j.apradiso.2017.07.041
19.
Chung
,
K.-W.
,
Chul-Joo
,
K. I. M.
, and
Yoon
,
H.-S.
,
2013
, “
Uranium Ion Exchange Adsorption Method Using Ultrasound
,” Patent No. 8,475,746.
20.
Reinoso-Maset
,
E.
, and
Ly
,
J.
,
2016
, “
Study of Uranium(VI) and Radium(II) Sorption at Trace Level on Kaolinite Using a Multisite Ion Exchange Model
,”
J. Environ. Radioact.
,
157
, pp.
136
148
.10.1016/j.jenvrad.2016.03.014
21.
Wei
, H. G.
,
2012
, “
Investigation of Sorption and Migration Effect Factors of Uranium on Granites in Beishan
,”
C. R. Geosci.
,
26
(
4
), pp.
823
828
.http://www.koreascience.or.kr/article/JAKO200603018218867.pdf
22.
Wainwright
,
H. M.
,
Finsterle
,
S.
,
Zhou
,
Q.
, and
Birkholzer
,
J. T.
,
2013
, “
Modeling the Performance of Large-Scale CO2 Storage Systems: A Comparison of Different Sensitivity Analysis Methods
,”
Int. J. Greenhouse Gas Control
,
17
, pp.
189
205
.10.1016/j.ijggc.2013.05.007
23.
Wainwright
,
H. M.
,
Finsterle
,
S.
,
Jung
,
Y.
,
Zhou
,
Q.
, and
Birkholzer
,
J. T.
,
2014
, “
Making Sense of Global Sensitivity Analyses
,”
Comput. Geosci.
,
65
, pp.
84
94
.10.1016/j.cageo.2013.06.006
24.
Cao
,
X.
,
Zheng
,
L.
,
Hou
,
D.
, and
Hu
,
L.
,
2019
, “
On the Long-Term Migration of Uranyl in Bentonite Barrier for High-Level Radioactive Waste Repositories: The Effect of Different Host Rocks
,”
Chem. Geol.
,
525
, pp.
46
57
.10.1016/j.chemgeo.2019.07.006
25.
Huertas
,
F.
,
Fuentes-Cantillana
,
J.
,
Jullien
,
F.
,
Rivas
,
R.
,
Linares
,
J.
,
Farina
,
P.
,
Ghoreychi
,
M.
,
Jockwer
,
N.
,
Kickmaier
,
W.
,
Martinez
,
M.
,
Samper
,
J.
,
Alonso
,
E.
, and
Elorza
,
R.
,
2000
, “
Full-Scale Engineered Barriers Experiment for a Deep Geological Repository for High-Level Radioactive Waste in Crystalline Host Rock (FEBEX Project)
,” EUR, Luxembourg, No.
ES0000097
.https://inis.iaea.org/collection/NCLCollectionStore/_Public/31/033/31033797.pdf?r=1
26.
Zheng
,
L.
, and
Samper
,
J.
,
2008
, “
A Coupled THMC Model of FEBEX Mock-Up Test
,”
Phys. Chem. Earth, Parts A/B/C
,
33
, pp.
S486
S498
.10.1016/j.pce.2008.10.023
27.
Zheng
,
L.
,
Samper
,
J.
, and
Montenegro
,
L.
,
2011
, “
A Coupled THC Model of the FEBEX In Situ Test With Bentonite Swelling and Chemical and Thermal Osmosis
,”
J. Contam. Hydrol.
,
126
(
1–2
), pp.
45
60
.10.1016/j.jconhyd.2011.06.003
28.
Bossart
,
P.
,
2011
, “
Characteristics of the Opalinus Clay at Mont Terri
,” Mont Terri Project, Wabern, Switzerland.
29.
Lauber
,
M.
,
Baeyens
,
B.
, and
Bradbury
,
M. H.
,
2000
, “
Physico-Chemical Characterisation and Sorption Measurements of Cs, Sr, Ni, Eu, Th, Sn and Se on Opalinus Clay From Mont Terri
,”
Paul Scherrer Institute
, Villigen, Switzerland, Report No. PSI-00-10. https://inis.iaea.org/collection/NCLCollectionStore/_Public/32/022/32022040.pdf
30.
Ho
,
C. K.
, and
Webb
,
S. W.
,
1996
, “
A Review of Porous Media Enhanced Vapor-Phase Diffusion Mechanisms, Models, and Data: Does Enhanced Vapor-Phase Diffusion Exist?
,” Sandia National Laboratories, Albuquerque, NM, Report No. SAND-96-1198.
31.
Zheng
,
L.
,
Kim
,
K.
,
Xu
,
H.
, and
Rutqvist
,
J.
,
2016
, “
DR Argillite Disposal R&D at LBNL
,” Lawrence Berkeley National Lab. (LBNL), Berkeley, CA, Report No. LBNL-1006013.
32.
Joseph
,
C.
,
Mibus
,
J.
,
Trepte
,
P.
,
Müller
,
C.
,
Brendler
,
V.
,
Park
,
D.
,
Jiao
,
Y.
,
Kersting
,
A. B.
, and
Zavarin
,
M.
,
2017
, “
Long-Term Diffusion of U(VI) in Bentonite: Dependence on Density
,”
Sci. Total Environ.
,
575
, pp.
207
218
.10.1016/j.scitotenv.2016.10.005
33.
de Windt
,
L.
,
Schneider
,
H.
,
Ferry
,
C.
,
Catalette
,
H.
,
Lagneau
,
V.
,
Poinssot
,
C.
,
Poulesquen
,
A.
, and
Jegou
,
C.
,
2006
, “
Modeling Spent Nuclear Fuel Alteration and Radionuclide Migration in Disposal Conditions
,”
Radiochim. Acta
,
94
(
9–11
), pp.
787
794
.10.1524/ract.2006.94.9-11.787
34.
Kim
,
J.-I.
,
2006
, “
Significance of Actinide Chemistry for the Long-Term Safety of Waste Disposal
,”
Nucl. Eng. Technol.
,
38
(
6
), pp.
459
482
.
35.
Bernot
,
P.
,
2005
, “
Dissolved Concentration Limits of Radioactive Elements
,” Yucca Mountain Project, Las Vegas, NV, Report No. ANL-WIS-MD-000010 REV 05.
36.
Wronkiewicz
,
D. J.
,
Bates
,
J. K.
,
Wolf
,
S. F.
, and
Buck
,
E. C.
,
1996
, “
Ten-Year Results From Unsaturated Drip Tests With UO2 at 90 °C: Implications for the Corrosion of Spent Nuclear Fuel
,”
J. Nucl. Mater.
,
238
(
1
), pp.
78
95
.10.1016/S0022-3115(96)00383-2
37.
Karnland
,
O.
,
Nilsson
,
U.
, and
Olsson
,
S.
,
2006
, “
Mineralogy and Sealing Properties of Various Bentonites and Smectite-Rich Clay Materials
,” SKB, Stockholm, Sweden, Technical Report No.
TR-06-30
. https://www.skb.se/publication/1419144/TR-06-30.pdf
38.
Zheng
,
L.
,
Rutqvist
,
J.
,
Xu
,
H.
, and
Birkholzer
,
J. T.
,
2017
, “
Coupled THMC Models for Bentonite in an Argillite Repository for Nuclear Waste: Illitization and Its Effect on Swelling Stress Under High Temperature
,”
Eng. Geol.
,
230
, pp.
118
129
.10.1016/j.enggeo.2017.10.002
39.
Pusch
,
R.
, and
Madsen
,
F. T.
,
1995
, “
Aspects on the Illitization of the Kinnekulle Bentonites
,”
Clays Clay Miner.
,
43
(
3
), pp.
261
270
.10.1346/CCMN.1995.0430301
40.
Xu
,
T.
,
Spycher
,
N.
,
Sonnenthal
,
E.
,
Zhang
,
G.
,
Zheng
,
L.
, and
Pruess
,
K.
,
2011
, “
TOUGHREACT Version 2.0: A Simulator for Subsurface Reactive Transport Under Non-Isothermal Multiphase Flow Conditions
,”
Comput. Geosci.
,
37
(
6
), pp.
763
774
.10.1016/j.cageo.2010.10.007
41.
Xu
,
T.
,
Sonnenthal
,
E.
,
Spycher
,
N.
, and
Pruess
,
K.
,
2006
, “
TOUGHREACT—A Simulation Program for Non-Isothermal Multiphase Reactive Geochemical Transport in Variably Saturated Geologic Media: Applications to Geothermal Injectivity and CO2 Geological Sequestration
,”
Comput. Geosci.
,
32
(
2
), pp.
145
165
.10.1016/j.cageo.2005.06.014
42.
Bradbury
,
M. H.
, and
Baeyens
,
B.
,
2011
, “
Predictive Sorption Modelling of Ni (II), Co (II), Eu (IIII), Th (IV) and U (VI) on MX-80 Bentonite and Opalinus Clay: A ‘Bottom-Up’ Approach
,”
Appl. Clay Sci.
,
52
(
1–2
), pp.
27
33
.10.1016/j.clay.2011.01.022
43.
Bradbury
,
M. H.
, and
Baeyens
,
B.
,
2005
, “
Modelling the Sorption of Mn(II), Co(II), Ni(II), Zn(II), Cd(II), Eu(III), Am(III), Sn(IV), Th(IV), Np(V) and U(VI) on Montmorillonite: Linear Free Energy Relationships and Estimates of Surface Binding Constants for Some Selected Heavy Metals and Actinides
,”
Geochim. Cosmochim. Acta
,
69
(
4
), pp.
875
892
.10.1016/j.gca.2004.07.020
44.
Bradbury
,
M. H.
, and
Baeyens
,
B.
,
2009
, “
Sorption Modelling on Illite—Part II: Actinide Sorption and Linear Free Energy Relationships
,”
Geochim. Cosmochim. Acta
,
73
(
4
), pp.
1004
1013
.10.1016/j.gca.2008.11.016
45.
Baeyens
,
B.
, and
Bradbury
,
M. H.
,
1997
, “
A Mechanistic Description of Ni and Zn Sorption on Na-Montmorillonite—Part I: Titration and Sorption Measurements
,”
J. Contam. Hydrol.
,
27
(
3–4
), pp.
199
222
.10.1016/S0169-7722(97)00008-9
46.
Schlegel
,
M. L.
,
Charlet
,
L.
, and
Manceau
,
A.
,
1999
, “
Sorption of Metal Ions on Clay Minerals: II. Mechanism of Co Sorption on Hectorite at High and Low Ionic Strength and Impact on the Sorbent Stability
,”
J. Colloid Interface Sci.
,
220
(
2
), pp.
392
405
.10.1006/jcis.1999.6538
47.
Heidmann
,
I.
,
Christl
,
I.
,
Leu
,
C.
, and
Kretzschmar
,
R.
,
2005
, “
Competitive Sorption of Protons and Metal Cations Onto Kaolinite: Experiments and Modeling
,”
J. Colloid Interface Sci.
,
282
(
2
), pp.
270
282
.10.1016/j.jcis.2004.08.019
48.
Spycher
,
N.
,
Issarangkun
,
M.
,
Stewart
,
B.
,
Şengör
,
S.
,
Belding
,
E.
,
Ginn
,
T.
,
Peyton
,
B.
, and
Sani
,
R.
,
2011
, “
Biogenic Uraninite Precipitation and Its Reoxidation by Iron(III) (Hydr)Oxides: A Reaction Modeling Approach
,”
Geochim. Cosmochim. Acta
,
75
(
16
), pp.
4426
4440
.10.1016/j.gca.2011.05.008
49.
Zheng
,
L.
,
Li
,
L.
,
Rutqvist
,
J.
,
Liu
,
H.-H.
, and
Birkholzer
,
J.
,
2012
, “
Modeling Radionuclide Transport in Clays
,” Lawrence Berkeley National Lab. (LBNL), Berkeley, CA, Report No. LBNL-6020E.
50.
Delegard
,
C. H.
,
Barney
,
G. S.
, and
Gallagher
,
S. A.
,
1984
, “
Effects of Hanford High-Level Waste Components on the Solubility and Sorption of Cobalt, Strontium, Neptunium, Plutonium, and Americium
,”
Geochemical Behavior of Disposed Radioactive Waste
, Vol.
246
,
American Chemical Society
, Richland, WA, pp.
95
112
.https://pubs.acs.org/doi/pdf/10.1021/bk-1984-0246.ch006
51.
Kaplan
,
D. I.
,
Serne
,
R. J.
, and
Owen
,
A. T.
,
1996
, “
Radionuclide Adsorption Distribution Coefficients Measured in Hanford Sediments for the Low Level Waste Performance Assessment Project
,” Pacific Northwest Lab., Richland, WA, Report No. PNNL-11485.
52.
Saltelli
,
A.
,
Ratto
,
M.
,
Tarantola
,
S.
, and
Campolongo
,
F.
,
2005
, “
Sensitivity Analysis for Chemical Models
,”
Chem. Rev.
,
105
(
7
), pp.
2811
2828
.10.1021/cr040659d
53.
Finsterle
,
S.
,
2010
, “
iTOUGH2 Universal Optimization Using the PEST Protocol, User's Guide
,” Lawrence Berkeley National Laboratory, Berkeley, CA, Report No. LBNL-3698E.
54.
Doherty
,
J.
,
2008
, “
PEST, Model Independent Parameter Estimation—User Manual
,” Fifth edition,
Watermark Numerical Computing
,
Brisbane, Australia
, accessed Oct. 1, 2009, https://www.nrc.gov/docs/ML0923/ML092360221.pdf
55.
Pruess
,
K.
,
Oldenburg
,
C. M.
, and
Moridis
,
G. J.
,
1999
, “
TOUGH2 User's Guide Version 2
,”
Lawrence Berkeley National Lab. (LBNL)
,
Berkeley, CA
, Report No. LBNL-43134.
56.
Pruess
,
K.
, and
Battistelli
,
A.
,
2005
, “
TMVOC, a Numerical Simulator for Three-Phase Non-Isothermal Flows of Multicomponent Hydrocarbon Mixtures in Variably Saturated Heterogeneous Media
,” Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA, Report No. LBNL-58641.
57.
Finsterle
,
S.
,
Kowalsky
,
M. B.
, and
Pruess
,
K.
,
2012
, “
TOUGH: Model Use, Calibration, and Validation
,”
Trans. ASABE
,
55
(
4
), pp.
1275
1290
.10.13031/2013.42240
58.
Doughty
,
C. A.
,
2013
, “
User's Guide for Hysteretic Capillary Pressure and Relative Permeability Functions in TOUGH2
,” Lawrence Berkeley National Lab. (LBNL), Berkeley, CA, Report No. LBNL-6533E.
59.
Pruess
,
K.
,
2011
, “
ECO2M: A TOUGH2 Fluid Property Module for Mixtures of Water, NaCl, and CO2, Including Super- and Sub-Critical Conditions, and Phase Change Between Liquid and Gaseous CO2
,” Lawrence Berkeley National Lab. (LBNL), Berkeley, CA, Report No. LBNL-4590E.
60.
Mariner
,
P. E.
,
Stein
,
E. R.
,
Frederick
,
J. M.
,
Sevougian
,
S. D.
, and
Hammond
,
G. E.
,
2017
, “
Advances in Geologic Disposal System Modeling and Shale Reference Cases
,” Sandia National Laboratories, Albuquerque, NM, Report Nos. SFWD-SFWST-2017-000044/SAND2017-10304 R.
61.
Sevougian
,
S.
,
Stein
,
E.
,
LaForce
,
T.
,
Perry
,
F.
,
Nole
,
M.
, and
Chang
,
K.
,
2019
, “GDSA Repository Systems Analysis FY19 Update,” Sandia National Lab. (SNL-NM), Albuquerque, NM, Report No. SAND2019-11942R.
62.
Stumm
,
W.
,
1992
,
Chemistry of the Solid-Water Interface: Processes at the Mineral-Water and Particle-Water Interface in Natural Systems
,
Wiley
, New York. https://www.wiley.com/en-us/Chemistry+of+the+Solid+Water+Interface%3A+Processes+at+the+Mineral+Water+and+Particle+Water+Interface+in+Natural+Systems-p-9780471576723
63.
Tournassat
,
C.
,
Tinnacher
,
R. M.
,
Grangeon
,
S.
, and
Davis
,
J. A.
,
2018
, “
Modeling Uranium(VI) Adsorption Onto Montmorillonite Under Varying Carbonate Concentrations: A Surface Complexation Model Accounting for the Spillover Effect on Surface Potential
,”
Geochim. Cosmochim. Acta
,
220
, pp.
291
308
.10.1016/j.gca.2017.09.049
64.
Stewart
,
B. D.
,
Mayes
,
M. A.
, and
Fendorf
,
S.
,
2010
, “
Impact of Uranyl-Calcium-Carbonato Complexes on Uranium(VI) Adsorption to Synthetic and Natural Sediments
,”
Environ. Sci. Technol.
,
44
(
3
), pp.
928
934
.10.1021/es902194x
65.
Meleshyn
,
A.
,
Azeroual
,
M.
,
Reeck
,
T.
,
Houben
,
G.
,
Riebe
,
B.
, and
Bunnenberg
,
C.
,
2009
, “
Influence of (Calcium–)Uranyl–Carbonate Complexation on U(VI) Sorption on Ca- and Na-Bentonites
,”
Environ. Sci. Technol.
,
43
(
13
), pp.
4896
4901
.10.1021/es900123s
66.
Reeder
,
R. J.
,
Nugent
,
M.
,
Tait
,
C. D.
,
Morris
,
D. E.
,
Heald
,
S. M.
,
Beck
,
K. M.
,
Hess
,
W. P.
, and
Lanzirotti
,
A.
,
2001
, “
Coprecipitation of Uranium(VI) With Calcite: XAFS, Micro-XAS, and Luminescence Characterization
,”
Geochim. Cosmochim. Acta
,
65
(
20
), pp.
3491
3503
.10.1016/S0016-7037(01)00647-0
You do not currently have access to this content.