Abstract

The prominence of climate change is surging with Australia feeling the impacts of hotter and dryer climates. With 2030 approaching, Australia's promise to reduce emissions is seeming harder to achieve with their energy mix being dominated by fossil fuels. The development of small modular reactor (SMR) technology in the nuclear industry offers a possible solution for Australia to shift away from coal and gas energy sources and invest in low carbon nuclear technologies. SMR technology is suitable for the Australian context due to the number of remote locations, the size of the mining, and processing industries and the minimal nuclear experience Australia has. This study aimed to quantify the environmental benefits of Australia incorporating nuclear power in their energy mix and to calculate the levelized cost of electricity of constructing a 684 MWel nuclear plant using the NuScale module. Additionally, a survey was created to provide an insight into the Australian perception of energy generation and nuclear power. The responses showed the Australian attitudes toward nuclear power and the misconceptions that are resulting in negative perceptions and attitudes.

References

1.
Australian Government Department of the Environment and Energy
,
2018
, “Australian Energy Update 2018,” Australian Government, Canberra, Australia, accessed Sept. 15, 2020, https://www.energy.gov.au/publications/australian-energy-update-2018
2.
Australian Government Department of the Prime Minster and Cabinet,
2015
, “
Australia's 2030 Emission Reduction Target
,” Commonwealth of Australia, Canberra, Australia, accessed July 5, 2020, https://www.pmc.gov.au/sites/default/files/publications/Summary%20Report%20Australias%202030%20 Emission%20Reduction%20Target.pdf
3.
World Nuclear Association,
2018
, “
Economics of Nuclear Power
,” London, UK, accessed July 6, 2020, https://www.world-nuclear.org/information-library/economic-aspects/economics-of-nuclear-power.aspx
4.
World Nuclear Association,
2018
, “
Small Nuclear Power Reactors
,” London, UK, accessed June 8, 2020, https://www.world-nuclear.org/information-library/nuclear-fuel-cycle/nuclear-power-reactors/small-nuclear-power-reactors.aspx
5.
Ingersoll
,
D. T.
,
Carelli
,
M. D.
, and
Todreas
,
N.
,
2014
,
Handbook of Small Modular Nuclear Reactors
,
M. D.
Carelli
, and
D. T.
Ingersoll, eds.
,
Woodhead Publisher (WP)
, Cambridge, UK.
6.
Australian Government Department of the Environment and Energy,
2019
, “
Australian Energy Update 2019
,” Australian Government, Australia, accessed Sept. 15, 2020, https://www.energy.gov.au/sites/default/files/australian_energy_ statistics_2019_energy_update_report_september.pdf
7.
Irwin
,
T.
,
2013
, “
An Introduction to Small Modular Reactors (SMRs)
,” SMR Nuclear Technology Pty, Australia, accessed July 23, 2020, http://www.smrnuclear.com.au/wp-content/uploads/2012/12/AN_INTRODUCTION_TO_SMALL_ MODULAR_REACTORS_Feb_2013_FINAL.pdf
8.
World Energy Council,
2004
, “
Comparison of Energy Systems Using Life Cycle Assessment
,” World Energy Council, London, UK, accessed July 12, 2020, https://www.worldenergy.org/assets/downloads/PUB_Comparison_of_ Energy_Systens_using_lifecycle_2004_WEC.pdf
9.
Banerjee
,
S.
, and
Gupta
,
H. P.
,
2017
, “
The Evolution of the Indian Nuclear Power Programme
,”
Prog. Nucl. Energy
,
101
, pp.
4
18
.10.1016/j.pnucene.2017.02.008
10.
Owen
,
A.
,
2011
, “
The Economic Viability of Nuclear Power in a Fossil-Fuel-Rich Country: Australia
,”
Energy Policy
,
39
(
3
), pp.
1305
1311
.10.1016/j.enpol.2010.12.002
11.
Lenzen
,
M.
,
2008
, “
Life Cycle Energy and Greenhouse Gas Emissions of Nuclear Energy: A Review
,”
Energy Convers. Manage.
,
49
(
8
), pp.
2178
2199
.10.1016/j.enconman.2008.01.033
12.
Mignacca
,
B.
, and
Locatelli
,
G.
,
2020
, “
Economics and Finance of Small Modular Reactors: A Systematic Review and Research Agenda
,”
Renewable Sustainable Energy Rev.
,
118
, p.
109519
.10.1016/j.rser.2019.109519
13.
Tolley
,
G.
,
Jones
,
D.
,
Castellano
,
M.
,
Clune
,
W.
,
Davidson
,
P.
,
Desai
,
K.
,
Foo
,
M.
,
Kats
,
A.
,
Liao
,
M.
,
Iantchev
,
E.
,
Ilten
,
N.
,
Li
,
W.
,
Nieslon
,
M.
,
Harris
,
A. R.
,
Taylor
,
J.
,
Theseira
,
W.
,
Waldhoff
,
S.
,
Weitzenfeld
,
D.
, and
Zheng
,
J.
,
2004
,
The Economic Future of Nuclear Power
,
University of Chicago
,
Chicago, IL
.
14.
Deutch
,
J.
,
Forsberg
,
C.
,
Kadak
,
A.
,
Kazimi
,
A.
,
Moniz
,
E.
,
Parson
,
J.
, and
Pierpoint
,
Y.
,
2003
,
Update of the MIT 2003 Future of Nuclear Power
,
Massachusetts Institute of Technology
, Cambridge, MA.
15.
Asen
,
E.
,
2019
, “
Carbon Taxes in Europe
,” Washington, DC, accessed Oct. 7, 2020, https://taxfoundation.org/carbon-taxes-in-europe-2019/
16.
Stamford
,
L.
, and
Azapagic
,
A.
,
2011
, “
Sustainability Indicators for the Assessment of Nuclear Power
,”
Energy
,
36
(
10
), pp.
6037
6057
.10.1016/j.energy.2011.08.011
17.
World Nuclear Association,
2017
, “
Thorium
,” World Nuclear Association, London, UK, accessed July 12, 2020, https://www.world-nuclear.org/information-library/current-and-future-generation/thorium.aspx
18.
World Nuclear Association,
2016
, “
Uranium and Depleted Uranium
,” World Nuclear Association, London, UK, accessed July 12, 2020, https://www.world-nuclear.org/information-library/nuclear-fuel-cycle/uranium-resources/uranium-and-depleted-uranium.aspx
19.
Kadiyala
,
A.
,
Kommalapati
,
R.
, and
Huque
,
Z.
,
2016
, “
Quantification of the Lifecycle Greenhouse Gas Emissions From Nuclear Power Generation Systems
,”
Energies (MDPI)
,
9
(
11
), pp.
863
865
.10.3390/en9110863
20.
Warner
,
E. S.
, and
Heath
,
G. A.
,
2012
, “
Life Cycle Greenhouse Gas Emissions of Nuclear Electricity Generation
,”
J. Ind. Ecol.
,
16
(
s1
), pp.
S73
S92
.10.1111/j.1530-9290.2012.00472.x
21.
Meier
,
P.
,
2002
,
Life-Cycle Assessment of Electricity Generation Systems and Applications for Climate Change Policy Analysis
,
Doctorate Land Resources University of Wisconsin
,
Madison, WI
.
22.
Andesta
,
S.
,
Thompson, J.P. Jarrell
,
M. J.
, and
Pendergast
,
D. R.
,
1998
, “
CANDU Reactors and Greenhouse Gas Emissions
,” Canadian Nuclear Association, Ottawa, ON, Canada, accessed July 24, 2020, http://www.nuclearfaq.ca/CO2_from_CANDU.pdf
23.
International Energy Agency,
2002
, “
Environmental and Health Impacts of Electricity Generation
,” IAEA, Vienna, Austria, accessed Aug. 2, 2020, https://www.ieahydro.org/media/b9067994/A%20Comparison%20of%20the%20 Environmental%20Impacts%20of%20Hydropower%20with%20those%20of%20 Other%20Generation%20Technologies%20.pdf
24.
Tokimatsu
,
K.
,
Takanobu
,
K.
,
Takayoshi
,
A.
,
Eric
,
W.
, and
Yoichi
,
K.
,
2006
, “
Evaluation of Lifecycle CO2 Emissions From the Japanese Electric Power Sector in the 21st Century Under Various Nuclear Scenarios
,”
Energy Policy
,
34
(
7
), pp.
833
852
.10.1016/j.enpol.2004.08.011
25.
White
,
S. W.
, and
Kulcinski
,
G. L.
,
2000
, “
Birth to Death Analysis of the Energy Payback Ratio and CO2 Gas Emission Rates From Coal, Fission, Wind, and DT-Fusion Electrical Power Plants
,”
Fusion Eng. Des.
,
48
(
3–4
), pp.
473
481
.10.1016/S0920-3796(00)00158-7
26.
Yang
,
Y.-H.
,
Lin
,
S.-J.
, and
Lewis
,
C.
,
2007
, “
Life Cycle Assessment of Fuel Selection for Power Generation in Taiwan
,”
J. Air Waste Manage. Assoc.
,
57
(
11
), pp.
1387
1395
.10.3155/1047-3289.57.11.1387
27.
Poinssot
,
C.
,
Bourg
,
S.
,
Ouvrier
,
N.
,
Combernoux
,
N.
,
Rostaing
,
C.
,
Vargas-Gonzalez
,
M.
, and
Bruno
,
J.
,
2014
, “
Assessment of the Environmental Footprint of Nuclear Energy Systems. Comparison Between Closed and Open Fuel Cycles
,”
Energy
,
69
, pp.
199
211
.10.1016/j.energy.2014.02.069
28.
Hondo
,
H.
,
2005
, “
Life Cycle GHG Emission Analysis of Power Generation Systems: Japanese Case
,”
Energy
,
30
(
11–12
), pp.
2042
2056
.10.1016/j.energy.2004.07.020
29.
Fthenakis
,
V.
, and
Kim
,
H.
,
2007
, “
Greenhouse-Gas Emissions From Solar Electric and Nuclear Power: A Life-Cycle Study
,”
Energy Policy
,
35
(
4
), pp.
2549
2557
.10.1016/j.enpol.2006.06.022
30.
Sovacool
,
B. K.
,
2008
, “
Valuing the Greenhouse Gas Emissions From Nuclear Power: A Critical Survey
,”
Energy Policy
,
36
(
8
), pp.
2950
2963
.10.1016/j.enpol.2008.04.017
31.
Vattenfall,
2007
, “
Life Cycle Assessment for Vattenfall's Electricity Generation
,” Vattenfall AB, Sweden, accessed July 24, 2020, https://group.vattenfall.com/de/siteassets/de/verantwortung/klima--umwelt/nachhaltigkeit/life-cycle-assessment---2019--lca.pdf
32.
Siddiqui
,
O.
, and
Dincer
,
I.
,
2017
, “
Comparative Assessment of the Environmental Impacts of Nuclear, Wind and Hydro-Electric Power Plants in Ontario: A Life Cycle Assessment
,”
J. Cleaner Prod.
,
164
, pp.
848
860
.10.1016/j.jclepro.2017.06.237
33.
Hatch,
2014
,
Life Cycle Assessment Literature Review of Nuclear, Wind and Natural Gas Power Generation
,
The Canadian Nuclear Association Sheridan Science and Technology Park
,
ON, Canada
.
34.
Turconi
,
R.
,
Boldrin
,
A.
, and
T. Astrup
,
F.
,
2013
, “
Life Cycle Assessment (LCA) of Electricity Generation Technologies: Overview, Comparability and Limitations
,”
Renewable Sustainable Energy Rev.
,
28
, pp.
555
565
.10.1016/j.rser.2013.08.013
35.
Drenne
,
T.
, and
Andruski
,
J.
,
2012
,
Power Systems Life Cycle Analysis Tool (Power LCAT)
,
Sandia National Laboratories
,
Albuquerque, NM
.
36.
Storm van Leeuwen J. W., and Smith, P.,
2005
, “Nuclear Power—The Energy Balance,” Cham, The Netherlands, accessed July 17, 2020, http://www. stormsmith.nl/
37.
International Atomic Energy Agency,
2016
, “
Climate Change and Nuclear Power 2016
,” IAEA, Austria, Vienna, accessed July 14, 2020, https://www-pub.iaea.org/MTCD/Publications/PDF/CCANP16web-86692468.pdf
38.
Nuclear Energy Agency,
2010
,
Public Attitudes to Nuclear Power
,
OECD
,
Hungary
.
39.
Whelan
,
J.
,
2003
, “
Running From the Storm: The Development of Climate Change, Review of Running From the Storm: The Development of Climate Change Policy in Australia, Clive Hamilton
,”
Aust. J. Environ. Educ.
,
19,
pp.
125
127
.10.1017/S0814062600001531
40.
Bird
,
D. K.
,
Haynes
,
K.
,
van den Honert
,
R.
,
McAneney
,
J.
, and
Poortinga
,
W.
,
2014
, “
Nuclear Power in Australia: A Comparative Analysis of Public Opinion Regarding Climate Change and the Fukushima Disaster
,”
Energy Policy
,
65
, pp.
644
653
.10.1016/j.enpol.2013.09.047
41.
Bickerstaff
,
K.
,
Lorenzoni
,
I.
,
Pidgeon
,
N. F.
,
Poortinga
,
W.
, and
Simmons
,
P.
,
2008
, “
Reframing Nuclear Power in the UK Energy Debate: Nuclear Power, Climate Change Mitigation and Radioactive Waste
,”
Public Understand. Sci.
,
17
(
2
), pp.
145
169
.10.1177/0963662506066719
42.
Macintosh
,
A.
,
2007
,
Siting Nuclear Power Plants in Australia: Where Would They Go
?,
The Australia Institute
, ACT, Australia.
43.
Renouf
,
M. A.
,
Grant
,
T.
,
Sevenster
,
M.
,
Logie
,
J.
,
Ridoutt
,
B.
,
Ximenes
,
F.
,
Bengtsson
,
J.
,
Cowie
,
A.
, and
Lane
,
J.
,
2015
, “
Best Practice Guide for Life Cycle Impact Assessment in Australia
,” AusLCI, Queensland, Australia, accessed July 21, 2020, http://www.auslci.com.au/Documents/Best_Practice_ Guide_V2_Draft_for_Consultation.pdf
44.
Skone
,
T.
,
2012
,
Role of Alternative Energy Sources: Nuclear Technology Assessment
,
Department of Energy, N.E.T. Laboratory
, Pittsburgh, PA.
45.
Koltun
,
P.
,
Tharumarajah
,
A.
,
Norgate
,
T.
, and
Haque
,
N.
,
2011
, “
Life Cycle Assessment of the Uranium Nuclear Power Cycle—Part 2a: New Generation GT-MHR Power Plant With Once Through Technology
,” CSIRO, Canberra, Australia, accessed July 23, 2020, https://publications.csiro.au/rpr/download?p id=csiro:EP114930&dsid=DS5
46.
Dominion Energy, Inc., Bechtel Power Corporation, TLG INC and MPR Associates,
2004
, “
Study of Construction Technologies and Schedules, O&M Staffing and Cost, Decommissioning Costs and Funding Requirements for Advanced Reactor Designs
,” United States Department of Energy, Washington, DC, accessed July 25, https://www.nrc.gov/docs/ML1018/ML101820632.pdf
47.
NuScale Power,
2018
, “
A Cost Competitive Nuclear Option for Multiple Applications
,” NuScale Power, Portland, OR, accessed July 29, 2020, https://www.nuscalepower.com/benefits/cost-competitive#:~:text=The%20estimated %20construction% 20cost%20for,plant%20is%20about%20%243%20billion
48.
Dones
,
R. C.
,
Bauer
,
R.
,
Bolliger
,
B.
,
Burger
,
T.
,
Heck
,
A.
,
Röder
,
M.
,
Emmenegger
,
R.
,
Frischknecht
,
N.
,
Jungbluth
,
M.
, and
Tuchschmid
,
2007
, “
Life Cycle Inventories of Energy Systems: Results for Current Systems in Switzerland and Other UCTE Countries. Ecoinvent Report No. 5
,” Paul Sherrer Institut Villigen, Swiss Centre for Life Cycle Inventories. Dubendorf, CH.
49.
Vattenfall.
2010
, “
Vattenfall AB Nuclear Power Certified Environmental Product Declaration EPD* of Electricity From Forsmark Nuclear Power Plant
,” Vattenfall AB, Sweden, accessed July 24, 2020, https://group.vattenfall.com/ se/siteassets/sverige/ringhals/in-english/environment/epd-summary-vattenfall-nuclear-power-2016.pdf
50.
AEA,
2009
,
Environmental Product Declaration of Electricity From Torness Nuclear Power Station
,
AEA
,
Gloucester
.
51.
Kenton
,
W.
,
2020
, “
Economies of Scale
,” Investopedia, New York, accessed July 10, https://www.investopedia.com/terms/e/economiesofscale.asp
52.
Aydogan
,
F.
,
Black
,
G.
,
Taylor Black
,
M. A.
, and
Solan
,
D.
,
2015
, “
Quantitative and Qualitative Comparison of Light Water and Advanced Small Modular Reactors (Smrs)
,”
J. Nucl. Eng. Radiat. Sci.
,
1
(
4
), pp.
1001
1014
.10.1115/1.4031098
53.
O'Connor
,
R. E.
,
Bord
,
R. J.
,
Yarnal
,
B.
, and
Wiefek
,
N.
,
2002
, “
Who Wants to Reduce Greenhouse Gas Emissions?
,”
Soc. Sci. Q.
,
83
(
1
), pp.
1
17
.10.1111/1540-6237.00067
54.
Pielke
, and
R.
, Sr
,
2010
,
An Evaluation of the Targets and Timetables of the Proposed Australian Emissions Trading Scheme
,
Center for Science and Technology Policy Research, University of Colorado
,
Boulder, CO
.
55.
Kim
,
Y.
,
2016
, “
The Radiation Problem and Its Solution From a Health Communication Perspective
,”
J. Korean Med. Sci.
,
31
(
Suppl 1
), pp.
S88
S98
.10.3346/jkms.2016.31.S1.S88
56.
Spence
,
A.
,
Venables
,
D.
,
Pidgeon
,
N.
,
Poortinga
,
W.
, and
Demsk
,
C.
,
2010
,
Public Perceptions of Climate Change Summary Findings of a Survey Conducted From January to March 2010 and Energy Futures in Britain Summary Findings of a Survey Conducted in January-March 2010. Technical Report (Understanding Risk Working Paper 10-01)
,
School of Psychology, Cardiff University
,
Cardiff, UK
.
57.
Wittneben
,
B. B. F.
,
2012
, “
The Impact of the Fukushima Nuclear Accident on European Energy Policy
,”
Environ. Sci. Policy
,
15
(
1
), pp.
1
3
.10.1016/j.envsci.2011.09.002
58.
Butler
,
C.
,
Parkhill
,
K.
, and
Pidgeon
,
N.
,
2011
, “
Nuclear Power After Japan: The Social Dimensions
,”
Environ. Sci. Policy Sustainable Dev.
,
53
(
6
), pp.
3
14
.10.1080/00139157.2011.623051
59.
Poortinga
,
W.
,
Aoyagi
,
M.
, and
Pidgeon
,
N. F.
,
2013
, “
Public Perceptions of Climate Change and Energy Futures Before and After the Fukushima Accident: A Comparison Between Britain and Japan
,”
Energy Policy
,
62
, pp.
1204
1211
.10.1016/j.enpol.2013.08.015
You do not currently have access to this content.