Abstract

Inconel 625 is considered one of the candidate materials for reactor fuel cladding in the Canadian supercritical water reactor (SCWR) design. Gas tungsten arc welding (GTAW) is being evaluated as a joining technique for SCWR fuel cladding since this method is widely used to join components in the power and nuclear industry. During the GTAW process, the welding thermal cycle produces different types of microstructures in both the heat-affected zone (HAZ) and fusion zone (FZ) that affect the material's mechanical properties. A series of welding experiments at various weld conditions were performed using an automatic GTAW orbital process on Inconel 625 alloy tubing. Simple analytical heat conduction and grain growth models were developed to predict weld temperature profiles and metallurgical transformations. Weld characterization included mechanical tests, optical microscopy, scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) elemental analysis, and microhardness measurements. Weld microstructural characterization revealed that a characteristic dendritic structure was formed in the FZ, while the HAZ exhibited larger equiaxed grains than those found in the base material (BM). SEM-EDS analysis showed no distinct alloying element segregation in both the HAZ and FZ. Welds produced with heat inputs of about 3.00 J/mm3 presented similar mechanical properties as those observed in the BM. In these welds, grain growth was homogenously minimized in the FZ. It is concluded that the effective welding heat input control can optimize the weld microstructure and the weld mechanical properties in Inconel 625 tubing used as Canadian SCWR reactor fuel cladding.

References

1.
Suave
,
L. M.
,
Cormier
,
J.
,
Villechaise
,
P.
,
Soula
,
A.
,
Hervier
,
Z.
,
Bertheau
,
D.
, and
Laigo
,
J.
,
2014
, “
Microstructural Evolutions During Thermal Aging of Alloy 625: Impact of Temperature and Forming Process
,”
Metall. Mater. Trans. A
,
45
(
7
), pp.
2963
2982
.10.1007/s11661-014-2256-7
2.
Shankar
,
V.
,
Rao
,
K. B. S.
, and
Mannan
,
S. L.
,
2001
, “
Microstructure and Mechanical Properties of Inconel 625 Superalloy
,”
J. Nucl. Mater.
,
288
(
2–3
), pp.
222
232
.10.1016/S0022-3115(00)00723-6
3.
Sridhar
,
S. P.
,
Arun Kumar
,
S.
, and
Sathiya
,
P.
,
2016
, “
A Study on the Effect of Different Activating Flux on A-TIG Welding Process of Incoloy 800H
,”
Adv. Mater. Sci.
,
16
(
3
), pp.
26
37
.10.1515/adms-2016-0014
4.
Bhaduri
,
A. K.
,
Srinivasa
,
G.
,
Gill
,
T. P. S.
, and
Mannan
,
S. L.
,
1995
, “
Effect of Aging on the Microstructure and Tensile Properties of an Alloy 800/9Cr-1Mo Steel Joint
,”
Int. J. Pressure Vessel Piping
,
61
(
1
), pp.
25
33
.10.1016/0308-0161(94)P3696-J
5.
Sireesha
,
M.
,
Shankar
,
V.
,
Shaju
,
K. A.
, and
Sundaresan
,
S.
,
2000
, “
Microstructural Features of Dissimilar Welds Between 316 LN Austenitic Stainless Steel and Alloy 800
,”
Mater. Sci. Eng. A
,
292
(
1
), pp.
74
82
.10.1016/S0921-5093(00)00969-2
6.
Petrzak
,
P.
,
Kowalski
,
K.
, and
Blicharski
,
M.
,
2016
, “
Analysis of Phase Transformations in Inconel 625 Alloy During Annealing
,”
Acta Phys. Pol. A
,
130
(
4
), pp.
1041
1043
.10.12693/APhysPolA.130.1041
7.
Hall
,
E.
,
1951
, “
The Deformation and Ageing of Mild Steel: III Discussion of Results
,”
Proc. Phys. Soc. Sect. B
,
64
(
9
), pp.
747
753
.10.1088/0370-1301/64/9/303
8.
Petch
,
N.
,
1953
, “
The Cleavage Strength of Polycrystals
,”
J. Iron Steel Inst.
,
174
, pp.
25
28
.
9.
Rosenthal
,
D.
,
1941
, “
Mathematical Theory of Heat Distribution During Welding and Cutting
,”
Weld. J.
,
20
, pp.
220 s
234 s
.
10.
Grong
,
O.
,
1997
,
Metallurgical Modelling of Welding
, 2nd ed.,
The Institute of Materials
,
London
.
11.
Runar
,
O.
, and
Grong
,
O.
,
2011
,
ASM Handbook
(Factors Influencing Heat Flow in Fusion Welding in Welding Fundamentals and Processes),
T. J.
Lienert
,
S. S.
Babu
,
T. A.
Siewert
, and
V. L.
Acoff
, eds., Vol.
6A
,
ASM International
,
Materials Park, OH
, pp.
67
81
.
12.
Stenbacka
,
N.
,
Choquet
,
I.
, and
Hurtig
,
K.
,
2012
, “
Review of Arc Efficiency Values for Gas Tungsten Arc Welding
,”
IIW Commission IV-XII-SG212 Intermediate Meeting
, BAM, Berlin, Apr. 18–20, Document No. XII-2070-12/212-1229-12.
13.
Special Metals
, 2013, “
INCONEL® Alloy 625 Datasheet
,” Special Metals, New Hartford, NY, accessed Aug. 8, 2019, http://www.specialmetals.com/assets/smc/documents/alloys/inconel/inconel-alloy-625.pdf
14.
Tsai
,
C. L.
, and
Tso
,
C. M.
,
1993
, “
Heat Flow in Fusion Welding
,”
ASM Handbook
(Welding, Brazing, and Soldering),
D. L.
Olson
,
T. A.
Siewert
,
S.
Liu
, and
G. R.
Edwards
, eds., Vol.
6
,
ASM International
,
Materials Park, OH
, pp.
7
18
.
15.
Shankar
,
V.
,
Valsan
,
M.
,
Rao
,
K. B. S.
, and
Mannan
,
S. L.
,
2001
, “
Room Temperature Tensile Behavior of Service Exposed and Thermally Aged Service Exposed Alloy 625
,”
Scr. Mater.
,
44
(
12
), pp.
2703
2711
.10.1016/S1359-6462(01)00965-4
16.
Conder
,
C. R.
,
Smith
,
G. D.
, and
Radavich
,
J. F.
,
1997
, “
Microstructural and Mechanical Property Characterization of Aged Inconel Alloy 625 LCF
,”
Proceedings of Superalloys 718, 625, 706 and Derivatives
, Pittsburgh, PA, June 15–18, pp.
447
458
.
17.
Suave
,
L. M.
,
Bertheau
,
D.
,
Cormier
,
J.
,
Villechaise
,
P.
,
Soula
,
A.
,
Hervier
,
Z.
, and
Laigo
,
J.
,
2014
, “
Impact of Microstructural Evolutions During Thermal Aging of Alloy 625 on Its Monotonic Mechanical Properties
,” MATEC Web of Conferences, Second European Symposium on Superalloys and Their Applications (
EUROSUPERALLOYS 2014
), Giens, France, May 12–16, p.
21001
.10.1051/matecconf/20141421001
18.
Kou
,
S.
,
2003
,
Welding Metallurgy
,
Wiley
,
Hoboken, NJ
.
You do not currently have access to this content.