Abstract

The GOTHIC code was validated using three experiments carried out in the PANDA facility in the framework of the OECD/NEA HYMERES project. These tests addressed the mixing of an initially stratified atmosphere by means of a vertical jet in the presence of on obstacle (circular plate). This paper reports on the simulations of three experiments, and complementary, quasi-steady-state tests without stratification, where the flow structure above the impingement plate could be observed by means of particle image velocimetry (PIV) velocity measurements in a region larger than that considered in the transient experiments. Moreover, simulations of similar tests without obstacle conducted during the OECD/SETH-2 project are also discussed. The reference, best-estimate model used for the analyses of the three experiments with different flowrates and initial and pressure boundary conditions was built on the base of a multistep approach. This was based on mesh and modeling sensitivity studies mostly performed for the complementary tests, to assess the capability to represent the flow structure produced by the jet–plate interaction with different meshes around the plate. Generally, the results show that the use of a coarse mesh and the standard k–ε turbulence model permits a reasonable representation of the erosion process, but with a systematic over prediction of the mixing time. The results with the reference model were more accurate for two experiments with two flowrates and same initial conditions and all complementary tests. For the third test with different initial and boundary conditions, however, poor results were obtained with the reference model, which could only be improved by further refining the mesh. These results indicate that a model “qualified” for certain conditions could be inadequate for other cases, and sensitivity studies are necessary for the specific conditions considered in the analyses.

References

1.
Schwarz
,
S.
,
Fischer
,
K.
,
Bentaib
,
A.
,
Burkhardt
,
J.
,
Lee
,
J.-J.
,
Duspiva
,
J.
,
Visser
,
D.
,
Kyttala
,
J.
,
Royl
,
P.
,
Kim
,
J.
,
P.
,
Kostka
,
P.
, and
Liang
,
R.
,
2011
, “
Benchmark on Hydrogen Distribution in a Containment Based on the OECD-NEA THAI HM-2 Experiment
,”
Nucl. Technol.
,
175
(
3
), pp.
594
603
.10.13182/NT11-A12508
2.
Studer
,
E.
,
Brinster
,
J.
,
Tkatschenko
,
I.
,
Mignot
,
G.
,
Paladino
,
D.
, and
Andreani
,
M.
,
2012
, “
Interaction of a Light Gas Stratified Layer With an Air Jet Coming From Below: Large Scale Experiments and Scaling Issues
,”
Nucl. Eng. Des.
,
253
, pp.
406
412
.10.1016/j.nucengdes.2012.10.009
3.
NEA/CSNI, OECD/SETH-2 Project
,
2012
, “
PANDA and MISTRA Experiments
,” Nuclear Safety Division of the OECD, Issy-les-Moulineaux, France, Final Summary Report No. NEA/CSNI/R(2012)5.
4.
Andreani
,
M.
,
Kapulla
,
R.
, and
Zboray
,
R.
,
2012
, “
Gas Stratification Break-Up by a Vertical Jet: Simulations Using the GOTHIC Code
,”
Nucl. Eng. Des.
,
249
, pp.
71
81
.10.1016/j.nucengdes.2011.06.004
5.
Visser
,
D. C.
,
Houkema
,
M.
,
Siccama
,
N. B.
, and
Komen
,
E. M.
,
2012
, “
Validation of a FLUENT CFD Model for Hydrogen Distribution in a Containment
,”
Nucl. Eng. Des.
,
245
(
2012
), pp.
161
171
.10.1016/j.nucengdes.2012.01.025
6.
Hultgren
,
A.
,
Gallego-Marcos
,
I.
,
Villanueva
,
W.
, and
Kudinov
,
P.
,
2014
, “
Large Scale Erosion of a Helium Stratified Layer by a Vertical Jet Using the GOTHIC Code
,”
Tenth International Topical Meeting on Nuclear Thermal-Hydraulics, Operation and Safety (NUTHOS-10)
, Okinawa, Japan, Dec. 14–18, Paper No. NUTHOS10-1290.
7.
Ishay
,
L.
,
Bieder
,
U.
,
Ziskind
,
G.
, and
Rashkovan
,
A.
,
2015
, “
Turbulent Jet Erosion of a Stably Stratified Gas Layer in a Nuclear Reactor Test Containment
,”
Nucl. Eng. Des.
,
292
, pp.
133
148
.10.1016/j.nucengdes.2015.06.001
8.
Abe
,
S.
,
Ishigaki
,
M.
,
Sibamoto
,
Y.
, and
Yonomoto
,
T.
,
2015
, “
RANS Analyses on Erosion Behavior of Density Stratification Consisted of Helium–Air Mixture Gas by a Low Momentum Vertical Buoyant Jet in the PANDA Test Facility, the Third International Benchmark Exercise (IBE-3)
,”
Nucl. Eng. Des.
,
289
, pp.
231
239
.10.1016/j.nucengdes.2015.04.002
9.
Kelm
,
S.
,
Ritterath
,
M.
,
Prasser
,
H.-M.
, and
Allelein
,
H.-J.
,
2016
, “
Application of the MiniPanda Test Case “Erosion of a Stratified Layer by a Vertical Jet' for CFD Validation
,”
Nucl. Eng. Des.
,
299
, pp.
124
135
.10.1016/j.nucengdes.2015.08.013
10.
Kelm
,
S.
,
Jahn
,
W.
,
Lehmkuhl
,
J.
, and
Allelein
,
H.-J.
,
2016
, “
A Comparative Assessment of Different experiments on buoyancy Driven Mixing Processes by Means of CFD
,”
Ann. Nucl. Energy
,
93
, pp.
50
57
.10.1016/j.anucene.2015.12.032
11.
Freitag
,
M.
,
Schmidt
,
E.
,
Gupta
,
S.
, and
Poss
,
G.
,
2016
, “
Simulation Benchmark Based on THAI-Experiment on Dissolution of a Steam Stratification by Natural Convection
,”
Nucl. Eng. Des.
,
299
, pp.
37
45
.10.1016/j.nucengdes.2015.07.001
12.
Fernández-Cosials
,
M. K.
,
Jimenez
,
G.
, and
Lopez-Alonso
,
E.
,
2016
, “
Analysis of a Gas Stratification Break-Up by a Vertical Jet Using the GOTHIC Code
,”
Nucl. Eng. Des.
,
297
, pp.
123
135
.10.1016/j.nucengdes.2015.11.035
13.
Hoyes
,
J. R.
, and
Ivings
,
M. J.
,
2016
, “
CFD Modelling of Hydrogen Stratification in Enclosures: Model Validation and Application to PAR Performance
,”
Nucl. Eng. Des.
,
310
, pp.
142
153
.10.1016/j.nucengdes.2016.08.036
14.
Kelm
,
S.
,
Kapulla
,
R.
, and
Allelein
,
H.-J.
,
2017
, “
Erosion of a Confined Stratified Layer by a Vertical Jet—Detailed Assessment of a CFD Approach Against the OECD/NEA PSI Benchmark
,”
Nucl. Eng. Des.
,
312
, pp.
228
238
.10.1016/j.nucengdes.2016.09.014
15.
Sarikurt
,
F. S.
, and
Hassan
,
Y. A.
,
2017
, “
Large Eddy Simulations of Erosion of a Stratified Layer by a Buoyant Jet
,”
Int. J. Heat Mass Transfer
,
112
, pp.
354
365
.10.1016/j.ijheatmasstransfer.2017.04.134
16.
Chan
,
C. K.
, and
Jones
,
S. C.
,
1997
, “
Gas Mixing Experiments in a Large Enclosure
,”
Proceedings of the 18th Annual Conference of the Canadian Nuclear Society
. https://www.nrc.gov/docs/ml0405/ml040510422.pdf
17.
NEA/CSNI
,
2018
, “
A Summary Report by the Hydrogen Mitigation Experiments for Reactor Safety (HYMERES) Project on the PANDA and MISTRA Experiments
,” Nuclear Safety Division of the OECD, Issy-les-Moulineaux, France, Report No. NEA/CSNI/R(2018)11.
18.
Abe
,
S.
,
Studer
,
E.
,
Ishigaki
,
M.
,
Sibamoto
,
Y.
, and
Yonomoto
,
T.
,
2018
, “
Stratification Breakup by a Diffuse Buoyant Jet: The MISTRA HM1-1 and 1-1bis Experiments and Their CFD Analysis
,”
Nucl. Eng. Des.
,
331
, pp.
162
175
.10.1016/j.nucengdes.2018.01.050
19.
Kapulla
,
R.
,
Mignot
,
G.
,
Paranjape
,
S.
,
Suter
,
S.
,
Fehlmann
,
M.
, and
Paladino
,
D.
,
2015
, “
OECD/NEA HYMERES Project: Jet/Plume Interacting With Flow Obstruction HP1 Series. Test Series Report
,” Project Report No. HYMERES-P-15-26, PSI Internal Report No. TM-42-15-16, Rev.0, (report restricted to project participants).
20.
Paranjape
,
S.
,
Mignot
,
G.
,
Kapulla
,
R.
, and
Paladino
,
D.
,
2017
, “
Parametric Study on Density Stratification Erosion Caused by a Horizontal Steam Jet Interacting With a Vertical Plate Obstruction
,”
Nucl. Eng. Des.
,
312
, pp.
351
360
.10.1016/j.nucengdes.2016.12.012
21.
GOTHIC
,
2016
, “
Containment Analysis Package, Version 8.2(QA)
,” EPRI, Palo Alto, CA.
22.
Andreani
,
M.
,
Daqiang
,
Y.
,
Gaikwad
,
A. J.
,
Ganju
,
S.
,
Gera
,
B.
,
Grigoryev
,
S.
,
Herranz
,
L. H.
,
Risto Huhtanen
,
R.
,
Kanaev
,
A.
,
Kelm
,
S.
,
Kim
,
J.
,
Nishimura
,
T.
,
Schramm
,
B.
,
Sharabi
,
M.
, and
Paladino
,
D.
,
2016
, “
Synthesis of a Blind CFD Benchmark Exercise Based on a Test in the PANDA Facility Addressing the Stratification Erosion by a Vertical Jet in Presence of a Flow Obstruction
,”
Proceedings of the Sixth OECD/NEA Workshop on Computational Fluid Dynamics for Nuclear Reactor Safety, (CFD4NRS-6)
, MIT, Cambridge, MA, Sept. 13–15, Paper No. 12.1.
23.
Andreani
,
M.
,
Gaikwad
,
A. J.
,
Ganju
,
S.
,
Gera
,
B.
,
Grigoryev
,
S.
,
Herranz
,
L. E.
,
Huhtanen
,
R.
,
Kale
,
V.
,
Kanaev
,
A.
,
Kapulla
,
R.
,
Kelm
,
S.
,
Kim
,
J.
,
Nishimura
,
T.
,
Paladino
,
D.
,
Paranjape
,
S.
,
Schramm
,
B.
,
Sharabi
,
M.
,
Shen
,
F.
,
Wei
,
B.
,
Yan
,
D.
, and
Zhang
,
R.
,
2019
, “
Synthesis of a CFD Benchmark Exercise Based on a Test in the PANDA Facility Addressing the Stratification Erosion by a Vertical Jet in Presence of a Flow Obstruction
,”
Nucl. Eng. Des.
,
354
, p. 110177. 10.1016/j.nucengdes.2019.110177
24.
Andreani
,
M.
, and
Paladino
,
D.
,
2010
, “
Simulation of Gas Mixing and Transport in a Multi-Compartment Geometry Using the GOTHIC Containment Code and Relatively Coarse Meshes
,”
Nucl. Eng. Des.
,
240
(
6
), pp.
1506
1527
.10.1016/j.nucengdes.2010.02.020
25.
Kelm
,
S.
,
Müller
,
H.
, and
Allelein
,
H.-J.
,
2016
, “
Importance of Thermal Radiation Heat Transfer Modeling in Containment Typical Flows
,”
Proceedings of the Sixth OECD/NEA Workshop on Computational Fluid Dynamics for Nuclear Reactor Safety (CFD4NRS-6)
, MIT, Cambridge, MA, Sept. 13–15, Paper No. 12.2.
26.
Filippov
,
A. S.
,
Grigoryev
,
S.
,
Yu
,
O. V.
, and
Tarasov
,
O. V.
,
2016
, “
On the Possible Role of Thermal Radiation in Containment Thermal–Hydraulics Experiments by the Example of CFD Analysis of TOSQAN T114 Air–He Test
,”
Nucl. Eng. Des.
,
310
, pp.
175
186
.10.1016/j.nucengdes.2016.10.003
27.
ANSYS,
2015
, “
ANSYS CFX-Solver Theory Guide and Solver Modeling Guide, Release 16.1
,” ANSYS, Canonsburg, PA.
28.
Cassol
,
F.
,
Brittes
,
R.
,
França
,
F. H. R.
, and
Ezekoye
,
O. A.
,
2014
, “
Application of the Weighted-Sum-of-Gray-Gases Model for Media Composed of Arbitrary Concentrations of H2O, CO2 and Soot
,”
Int. J. Heat Mass Transfer
,
79
, pp.
796
806
.10.1016/j.ijheatmasstransfer.2014.08.032
29.
Paranjape
,
S.
,
Kapulla
,
R.
,
Mignot
,
G.
, and
Paladino
,
D.
,
2019
, “
Gas Redistribution Caused by Interacting Heat Sources in the Presence of a Vertical Condenser
,”
Proceedings of ICAPP -2019, ICAPP 2019—International Congress on Advances in Nuclear Power Plants,
France, Juan-les-pins, May 12–15, Paper No. 000408.
30.
Andreani
,
M.
, and
Paranjape
,
S.
,
2019
, “
Modelling of the Interaction of Two Heat Sources Simulating the Thermal Effects of PARs
,”
Proceedings of ICAPP -2019, ICAPP 2019—International Congress on Advances in Nuclear Power Plants
, France, Juan-les-pins, May 12–15, Paper No. 000410.
31.
HYMERES Phase 2 Project,
2017
, “
Agreement on the OECD/NEA HYMERES Phase 2 Project, To Resolve Complex Safety Relevant Issues for the Analysis and Mitigation of a Severe Accident Leading to Hydrogen Release into a Nuclear Plant Containment and Suppression Pressure Pool System Issues
,” accessed Feb. 19, 2020, https://www.oecd-nea.org/jointproj/hymeres2.html
You do not currently have access to this content.