Studies on debris bed formation behavior are important for improved evaluation of core relocation and debris bed coolability that might be encountered in a core disruptive accident (CDA) of sodium-cooled fast reactors (SFR). Motivated to clarify the flow-regime characteristics underlying this behavior, both experimental investigations and empirical-model development are being performed at the Sun Yat-sen University in China. As for the experimental study, several series of simulated experiments are being conducted by discharging various solid particles into water pools. To obtain a comprehensive understanding, a variety of experimental parameters, including particle size (0.000125– 0.008 m), particle density (glass, aluminum, alumina, zirconia, steel, copper, and lead), particle shape (spherical and nonspherical), and water depth (0–0.8 m) along with the particle release pipe diameter (0.01–0.04 m) were varied. It is found that due to the different interaction mechanisms between solid particles and water pool, four kinds of flow regimes, termed, respectively, as the particle-suspension regime, the pool-convection dominant regime, the transitional regime, and the particle-inertia dominant regime, were identifiable. As for the empirical-model development, aside from a base model which is restricted to predictions of spherical particles, in this paper considerations on how to cover more realistic conditions (esp. debris of nonspherical shapes) are also discussed. It is shown that by coupling the base model with an extension scheme, respectable agreement between experiments and model predictions for regime transition can be achieved for both spherical and nonspherical particles given our current range of conditions.

References

1.
Tentner
,
A. M.
,
Parma
,
E.
,
Wei
,
T.
, and
Wigeland
,
R.
,
2010
, “
Evaluation of Design Measures for Severe Accident Prevention and Consequence Mitigation
,” Argonne National Laboratory, Lemont, IL, Report No. ANL-GENIV-128.
2.
Zhang
,
B.
,
Harada
,
T.
,
Hirahara
,
D.
,
Matsumoto
,
T.
,
Morita
,
K.
,
Fukuda
,
K.
,
Yamano
,
H.
,
Suzuki
,
T.
, and
Tobita
,
Y.
,
2011
, “
Experimental Investigation on Self-Leveling Behavior in Debris Beds
,”
Nucl. Eng. Des.
,
241
(
1
), pp.
366
377
.
3.
Waltar
,
A. E.
, and
Reynolds
,
A. B.
,
1981
,
Fast Breeder Reactors
,
Pergamon Press
,
New York
, p.
700
.
4.
Suzuki
,
T.
,
Kamiyama
,
K.
,
Yamano
,
H.
,
Kubo
,
S.
,
Tobita
,
Y.
,
Nakai
,
R.
, and
Koyama
,
K.
,
2014
, “
A Scenario of Core Disruptive Accident for Japan Sodium-Cooled Fast Reactor to Achieve In-Vessel Retention
,”
J. Nucl. Sci. Technol.
,
51
(
4
), pp.
493
513
.
5.
Ren
,
L. X.
,
2012
, “
Severe Accidents Analysis in CEFR and Technology Gaps
,”
International Workshop on Prevention and Mitigation of Severe Accidents in Sodium-Cooled Fast Reactors
, Tsuruga, Japan, June 11–13, p.
22
.https://www.jaea.go.jp/04/turuga/internationalworkshop/presentationPDF/201206131110Lixia%20Ren_China.pdf
6.
Vasilyev
,
B. A.
,
Shepelev
,
S. F.
,
Ashirmetov
,
M. R.
, and
Poplavsky
,
V. M.
,
2013
, “
BN-1200 Reactor Power Unit Design Development
,”
International Conference on Fast Reactors and Related Fuel Cycles: Safety Technologies and Sustainable Scenarios
(
FR-13
), Paris, France, Mar. 4–7, p.
19
.http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/45/089/45089480.pdf
7.
Cheng
,
S.
,
Hirahara
,
D.
,
Tanaka
,
Y.
,
Gondai
,
Y.
,
Zhang
,
B.
,
Matsumoto
,
T.
,
Morita
,
K.
,
Fukuda
,
K.
,
Yamano
,
H.
,
Suzuki
,
T.
, and
Tobita
,
Y.
,
2011
, “
Experimental Investigation of Bubbling in Particle Beds With High Solid Holdup
,”
Exp. Therm. Fluid Sci.
,
35
(
2
), pp.
405
415
.
8.
Lipinski
,
R.
,
1982
, “
A Model for Boiling and Dryout in Particle Beds
,” Sandia National Laboratory, Albuquerque, NM, Report No.
NUREG/CR-2646
https://inis.iaea.org/search/search.aspx?orig_q=RN:14732098.
9.
Hesson
,
J. C.
,
Sevy
,
R. H.
, and
Marciniak
,
T. J.
,
1971
, “
Postaccident Heat Removal in LMFBRs: In-Vessel Considerations
,” Argonne National Laboratory, Lemont, IL, Report No.
ANL-7859
.https://inis.iaea.org/search/search.aspx?orig_q=RN:3018620
10.
Gabor
,
J. D.
,
1974
, “
Simulation Experiments for Internal Heat Generation
,” Reactor Development Program Progress, Argonne National Laboratory, Lemont, IL, Report No. ANL-RDP-32.
11.
Alvarez
,
D.
, and
Amblard
,
M.
,
1982
, “
Fuel Leveling
,”
Fifth Information Exchange Meeting on Post Accident Debris Cooling
, Karlsruhe, Germany, July 28–30, pp.
9
12
.
12.
Basso
,
S.
,
Konovalenko
,
A.
, and
Kudinov
,
P.
,
2014
, “
Sensitivity and Uncertainty Analysis for Prediction of Particulate Debris Bed Self-Leveling in Prototypic Severe Accident (SA) Conditions
,”
International Congress on Advances in Nuclear Power Plants
(
ICAPP
), Charlotte, NC, Apr. 6–9, p.
10
.http://kth.diva-portal.org/smash/record.jsf?pid=diva2%3A807347&dswid=9093
13.
Konovalenko
,
A.
,
Basso
,
S.
,
Karbojian
,
A.
, and
Kudinov
,
P.
,
2012
, “
Experimental and Analytical Study of the Particulate Debris Bed Self-Leveling
,”
Nineth International Topical Meeting on Nuclear Thermal-Hydraulics, Operation and Safety
(
NUTHOS
), Kaohsiung, Taiwan, Sep. 9–13, p.
13
.https://www.diva-portal.org/smash/get/diva2:679425/FULLTEXT01.pdf
14.
Cheng
,
S.
,
Tanaka
,
Y.
,
Gondai
,
Y.
,
Kai
,
T.
,
Zhang
,
B.
,
Matsumoto
,
T.
,
Morita
,
K.
,
Fukuda
,
K.
,
Yamano
,
H.
,
Suzuki
,
T.
, and
Tobita
,
Y.
,
2011
, “
Experimental Studies and Empirical Models for the Transient Self-Leveling Behavior in Debris Bed
,”
J. Nucl. Sci. Technol.
,
48
(
10
), pp.
1327
1336
.
15.
Cheng
,
S.
,
Yamano
,
H.
,
Suzuki
,
T.
,
Tobita
,
Y.
,
Nakamura
,
Y.
,
Zhang
,
B.
,
Matsumoto
,
T.
, and
Morita
,
K.
,
2013
, “
Characteristics of Self-Leveling Behavior of Debris Beds in a Series of Experiments
,”
Nucl. Eng. Technol.
,
45
(
3
), pp.
323
334
.
16.
Cheng
,
S.
,
Yamano
,
H.
,
Suzuki
,
T.
,
Tobita
,
Y.
,
Gondai
,
Y.
,
Nakamura
,
Y.
,
Zhang
,
B.
,
Matsumoto
,
T.
, and
Morita
,
K.
,
2013
, “
An Experimental Investigation on Self-Leveling Behavior of Debris Beds Using Gas-Injection
,”
Exp. Therm. Fluid Sci.
,
48
, pp.
110
121
.
17.
Cheng
,
S.
,
Tagami
,
H.
,
Yamano
,
H.
,
Suzuki
,
T.
,
Tobita
,
Y.
,
Zhang
,
B.
,
Matsumoto
,
T.
, and
Morita
,
K.
,
2013
, “
Evaluation of Debris Bed Self-Leveling Behavior: A Simple Empirical Approach and Its Validations
,”
Ann. Nucl. Energy
,
63
(
1
), pp.
188
198
.
18.
Cheng
,
S.
,
Tagami
,
H.
,
Yamano
,
H.
,
Suzuki
,
T.
,
Tobita
,
Y.
,
Taketa
,
S.
,
Nishi
,
S.
,
Nishikido
,
T.
,
Zhang
,
B.
,
Matsumoto
,
T.
, and
Morita
,
K.
,
2014
, “
An Investigation on Debris Bed Self-Leveling Behavior With Non-Spherical Particles
,”
J. Nucl. Sci. Technol.
,
51
(
9
), pp.
1096
1106
.
19.
Shamsuzzaman
,
M.
,
Horie
,
T.
,
Fuke
,
F.
,
Kai
,
T.
,
Zhang
,
B.
,
Matsumoto
,
T.
,
Morita
,
K.
,
Tagami
,
H.
,
Suzuki
,
T.
, and
Tobita
,
Y.
,
2013
, “
Experimental Evaluation of Debris Bed Characteristics in Particulate Debris Sedimentation Behavior
,”
ASME
Paper No. ICONE21-15693.
20.
Holdich
,
R. G.
,
2002
,
Fundamentals of Particle Technology
,
Midland Information Technology & Publishing
,
Shepshed, Leicestershire, UK
, p.
182
.
21.
Matsuba
,
K.
,
Kamiyama
,
K.
,
Toyooka
,
J.
,
Tobita
,
Y.
,
Zuyev
,
V.
,
Kolodeshnikov
,
A.
, and
Vassiliev
,
Y.
,
2016
, “
Experimental Discussion on Fragmentation Mechanism of Molten Oxide Discharged Into a Sodium Pool
,”
Mech. Eng. J.
,
3
(
3
), p.
15-00595
.
22.
Abe
,
Y.
,
Matsuo
,
E.
,
Arai
,
T.
,
Nariai
,
H.
,
Chitose
,
K.
,
Koyama
,
K.
, and
Itoh
,
K.
,
2006
, “
Fragmentation Behavior During Molten Material and Coolant Interactions
,”
Nucl. Eng. Des.
,
236
(
14–16
), pp.
1668
1681
.
23.
IAEA
,
2006
,
Fast Reactor Database: 2006 Update
,
International Atomic Energy Agency
, Vienna,
Austria
.
24.
Barabasi
,
A.
,
Albert
,
R.
, and
Schiffer
,
P.
,
1999
, “
The Physics of Sand Castles: Maximum Angle of Stability in Wet and Dry Granular Media
,”
Phys. A
,
266
(
1–4
), pp.
366
371
.
25.
Morita
,
K.
,
Matsumoto
,
T.
,
Nishi
,
S.
,
Nishikido
,
T.
,
Cheng
,
S.
,
Tagami
,
H.
,
Suzuki
,
T.
, and
Tobita
,
Y.
,
2016
, “
A New Empirical Model for Self-Leveling Behavior of Cylindrical Particle Beds
,”
J. Nucl. Sci. Technol.
,
53
(
5
), pp.
713
725
.
26.
Cheng
,
S.
,
Zhang
,
T.
,
Wang
,
S.
,
Jiang
,
G.
,
Lin
,
S.
,
Yu
,
J.
, and
Wang
,
L.
,
2017
, “
Knowledge From Recent Investigation on Flow Regime Characteristics in Debris Bed Formation Behavior Related to SFR Severe Accident Analyses
,”
ASME
Paper No. ICONE25-66143.
27.
Matsuba
,
K.
,
Kamiyama
,
K.
,
Konishi
,
K.
,
Toyooka
,
J.
,
Sato
,
I.
,
Zuev
,
V. A.
,
Kolodeshnikov
,
A. A.
, and
Vasilyev
,
Y. S.
,
2012
, “
Experimental Study on Material Relocation During Core Disruptive Accident in Sodium-Cooled Fast Reactors: Results of a Series of Fragmentation Tests for Molten Oxide Discharged Into a Sodium Pool
,”
Eighth Japan-Korea Symposium on Nuclear Thermal Hydraulics and Safety
(
NTHAS-8
), Beppu, Japan, Dec. 9–12, p.
7
.https://inis.iaea.org/search/search.aspx?orig_q=RN:46074204
28.
Ergun
,
S.
,
1952
, “
Fluid Flow Through Packed Columns
,”
Chem. Eng. Prog.
,
48
(2), pp.
89
94
.
29.
Geldart
,
D.
,
1990
, “
Estimation of Basic Particle Properties for Use in Fluid-Particle Process Calculations
,”
Powder. Technol.
,
60
(
1
), pp.
1
13
.
30.
Geldart
,
D.
,
1987
,
Gas Fluidization Technology
,
Wiley
,
Chichester, UK
, p.
476
.
You do not currently have access to this content.